A 2-D numerical study of microscale phase change material thermal storage for GaN transistor thermal management

Xudong Tang, R. Bonner, T. Desai, A. Fan
{"title":"A 2-D numerical study of microscale phase change material thermal storage for GaN transistor thermal management","authors":"Xudong Tang, R. Bonner, T. Desai, A. Fan","doi":"10.1109/STHERM.2011.5767174","DOIUrl":null,"url":null,"abstract":"A novel thermal management technology was explored to lower the peak temperature associated with high power GaN transistors in pulse application. The technology involves the use of an embedded microscale PCM heat storage device within the chip (near the active channels of the GaN device), which effectively increases the heat capacity of the material by taking advantage of the latent heat of the PCM. In this study, 2-D transient thermal models were developed to characterize the thermal behavior of GaN transistors with micro-scale PCM heat storage device. The model is capable of computing the spatial-temporal temperature distribution of the GaN transistor as it is rapidly pulsed and captures the formation and evolution of hot spots that form within the device. The model also captures the PCM melting behavior and latent heat absorption during the transient. The use of a PCM can effectively control the hot spot temperature by absorbing a significant portion of the transient heat input. As shown in this modeling study, the use of PCM heat storage in GaN transistors reduces the GaN hot spot temperature for a given heat input. Alternatively, the maximum allowable GaN heat input can be increased with the use of PCM. At a given heat input flux of 5×105 W/cm2, for example, the use of PCM heat storage can lower the peak temperature by 21∼22°C, relative to transistors without PCM (baseline), regardless of the duty cycle ratio. In addition, a transistor with PCM heat storage can accommodate much higher joule heat generation without exceeding the maximum allowable temperature limit, 180°C. In this study, the modeling results show that by integrating a PCM that has a 140°C melting point in a 5μm×6μm groove configuration, the critical heat flux can be increased from 13.34×105 W/cm2 (baseline) to 16.8×105 W/cm2 (with PCM), a 26% improvement. Key PCM design parameters were identified in this modeling study: (1) PCM amount; (2) PCM melting point; and (3) PCM groove structure. Their coupling and the impact on design optimization require further investigation.","PeriodicalId":128077,"journal":{"name":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"187 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2011.5767174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel thermal management technology was explored to lower the peak temperature associated with high power GaN transistors in pulse application. The technology involves the use of an embedded microscale PCM heat storage device within the chip (near the active channels of the GaN device), which effectively increases the heat capacity of the material by taking advantage of the latent heat of the PCM. In this study, 2-D transient thermal models were developed to characterize the thermal behavior of GaN transistors with micro-scale PCM heat storage device. The model is capable of computing the spatial-temporal temperature distribution of the GaN transistor as it is rapidly pulsed and captures the formation and evolution of hot spots that form within the device. The model also captures the PCM melting behavior and latent heat absorption during the transient. The use of a PCM can effectively control the hot spot temperature by absorbing a significant portion of the transient heat input. As shown in this modeling study, the use of PCM heat storage in GaN transistors reduces the GaN hot spot temperature for a given heat input. Alternatively, the maximum allowable GaN heat input can be increased with the use of PCM. At a given heat input flux of 5×105 W/cm2, for example, the use of PCM heat storage can lower the peak temperature by 21∼22°C, relative to transistors without PCM (baseline), regardless of the duty cycle ratio. In addition, a transistor with PCM heat storage can accommodate much higher joule heat generation without exceeding the maximum allowable temperature limit, 180°C. In this study, the modeling results show that by integrating a PCM that has a 140°C melting point in a 5μm×6μm groove configuration, the critical heat flux can be increased from 13.34×105 W/cm2 (baseline) to 16.8×105 W/cm2 (with PCM), a 26% improvement. Key PCM design parameters were identified in this modeling study: (1) PCM amount; (2) PCM melting point; and (3) PCM groove structure. Their coupling and the impact on design optimization require further investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于GaN晶体管热管理的微尺度相变材料热存储的二维数值研究
为降低高功率氮化镓晶体管在脉冲应用中的峰值温度,探索了一种新的热管理技术。该技术涉及在芯片内(靠近GaN器件的有源通道)使用嵌入式微尺度PCM储热装置,通过利用PCM的潜热有效地增加材料的热容量。在这项研究中,建立了二维瞬态热模型来表征具有微尺度PCM储热器件的GaN晶体管的热行为。该模型能够计算GaN晶体管在快速脉冲时的时空温度分布,并捕获器件内形成的热点的形成和演变。该模型还捕获了瞬态相变的熔化行为和潜热吸收。利用PCM可以有效地控制热点温度,通过吸收大量的瞬态热输入。如本模型研究所示,在GaN晶体管中使用PCM热存储可以降低给定热输入的GaN热点温度。另外,最大允许氮化镓热输入可以增加与PCM的使用。例如,当给定的热输入通量为5×105 W/cm2时,无论占空比如何,相对于没有PCM的晶体管(基线),使用PCM储热可以将峰值温度降低21 ~ 22°C。此外,具有PCM热存储的晶体管可以在不超过最高允许温度限制180°C的情况下容纳更高的焦耳热产生。在本研究中,建模结果表明,通过将熔点为140°C的PCM集成到5μm×6μm槽构型中,临界热流密度可以从13.34×105 W/cm2(基线)增加到16.8×105 W/cm2 (PCM),提高26%。在建模研究中确定了关键的PCM设计参数:(1)PCM量;(2) PCM熔点;(3) PCM槽结构。它们的耦合和对设计优化的影响需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data center design using improved CFD modeling and cost reduction analysis Data center efficiency with higher ambient temperatures and optimized cooling control Effect of server load variation on rack air flow distribution in a raised floor data center Thermal design in the Design for Six Sigma — DIDOV framework ASIC package lid effects on temperature and lifetime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1