IoT-enabled Soft Robotics for Electrical Engineers

P. Sundaravadivel, P. Ghosh, Bikal Suwal
{"title":"IoT-enabled Soft Robotics for Electrical Engineers","authors":"P. Sundaravadivel, P. Ghosh, Bikal Suwal","doi":"10.1145/3526241.3530369","DOIUrl":null,"url":null,"abstract":"In the field of technology and engineering education, there is a lot of uncertainty as to what the future trends are going to be. The institutions are preparing and training their students for jobs that they haven't even explored yet. To overcome this uncertainty, new domains with overlapping skill sets are constantly integrated to engage students with technological development for the future computing era. Robotics and the Internet of Things have been a popular area of interest amongst Electrical and Computer Engineers with high global value. Soft robots can be described as a form of biomimicry in which traditional hard robotics are replaced by a more sophisticated model that imitates human, animal, and plant life. In this article, we discuss a problem-based learning approach to integrate key concepts of soft robotics into the undergraduate electrical engineering curricula. The proposed module can be easily integrated into any IoT and Robotics curriculum.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the field of technology and engineering education, there is a lot of uncertainty as to what the future trends are going to be. The institutions are preparing and training their students for jobs that they haven't even explored yet. To overcome this uncertainty, new domains with overlapping skill sets are constantly integrated to engage students with technological development for the future computing era. Robotics and the Internet of Things have been a popular area of interest amongst Electrical and Computer Engineers with high global value. Soft robots can be described as a form of biomimicry in which traditional hard robotics are replaced by a more sophisticated model that imitates human, animal, and plant life. In this article, we discuss a problem-based learning approach to integrate key concepts of soft robotics into the undergraduate electrical engineering curricula. The proposed module can be easily integrated into any IoT and Robotics curriculum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向电气工程师的物联网软机器人
在技术和工程教育领域,未来的发展趋势有很多不确定因素。这些机构正在为他们的学生准备和培训他们甚至还没有探索过的工作。为了克服这种不确定性,不断整合具有重叠技能集的新领域,以使学生参与未来计算时代的技术发展。机器人和物联网一直是电气和计算机工程师感兴趣的热门领域,具有很高的全球价值。软机器人可以被描述为一种仿生学形式,其中传统的硬机器人被一种更复杂的模仿人类、动物和植物生命的模型所取代。在本文中,我们讨论了一种基于问题的学习方法,将软机器人的关键概念整合到本科电气工程课程中。提出的模块可以很容易地集成到任何物联网和机器人课程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Power Consumption using Approximate Encoding for CNN Accelerators at the Edge Design and Evaluation of In-Exact Compressor based Approximate Multipliers MOCCA: A Process Variation Tolerant Systolic DNN Accelerator using CNFETs in Monolithic 3D ENTANGLE: An Enhanced Logic-locking Technique for Thwarting SAT and Structural Attacks Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1