{"title":"Performance of resource delayed release strategy in software-defined OTN over WDM networks for uniform and non-uniform traffic","authors":"Shideh Yavary Mehr , Byrav Ramamurthy , Yu Zhou , Bingli Guo , Shanguo Huang","doi":"10.1016/j.osn.2021.100663","DOIUrl":null,"url":null,"abstract":"<div><p><span>In today's wide area networks, especially in Optical Transport Networks<span><span> (OTN) with Software Defined Networking (SDN) features enabled over </span>Wavelength Division Multiplexing (WDM), Bandwidth on Demand (BoD) is an important service that can be satisfied by dynamic end-to-end service provisioning. Service provisioning time (SPT) and </span></span>Blocking Probability<span> (BP) are critical performance metrics for the users and carriers. This paper extends the concept of the Resource Delayed Release (RDR) strategy for WDM networks<span><span>. The basic idea of this strategy is to introduce a delay in releasing the optical channel, when the channel is no longer carrying any services. This delay can help speed up the provisioning time for carrying the next service request, avoiding the time usually taken to establish a new optical channel. The main goals of the RDR method are to reduce SPT and BP while simultaneously satisfying the quality of service (QoS) constraints. In this paper, we investigate the effects of uniform and non-uniform traffic on the performance of RDR strategy. For non-uniform traffic simulation, we use a </span>mesh topology with the 14 most populous cities in USA as of 2018 and model the non-uniform traffic based on population density. Further, we introduce a new metric called the Bandwidth Blocking Probability (BBP) to measure the quality of the service offered by the network. Simulation results show advantages of using the RDR method under a wide variety of traffic scenarios for both uniform and non-uniform traffic distributions compared to the traditional method. RDR reduces SPT by 45–90% for uniform traffic and 41–75% for non-uniform traffic. RDR reduces BP by 35–85% for uniform traffic and 30–75% for non-uniform traffic. Additionally, RDR lowers BBP by 31–73% for uniform traffic and 29–68% for non-uniform traffic.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"44 ","pages":"Article 100663"},"PeriodicalIF":1.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427721000606","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
In today's wide area networks, especially in Optical Transport Networks (OTN) with Software Defined Networking (SDN) features enabled over Wavelength Division Multiplexing (WDM), Bandwidth on Demand (BoD) is an important service that can be satisfied by dynamic end-to-end service provisioning. Service provisioning time (SPT) and Blocking Probability (BP) are critical performance metrics for the users and carriers. This paper extends the concept of the Resource Delayed Release (RDR) strategy for WDM networks. The basic idea of this strategy is to introduce a delay in releasing the optical channel, when the channel is no longer carrying any services. This delay can help speed up the provisioning time for carrying the next service request, avoiding the time usually taken to establish a new optical channel. The main goals of the RDR method are to reduce SPT and BP while simultaneously satisfying the quality of service (QoS) constraints. In this paper, we investigate the effects of uniform and non-uniform traffic on the performance of RDR strategy. For non-uniform traffic simulation, we use a mesh topology with the 14 most populous cities in USA as of 2018 and model the non-uniform traffic based on population density. Further, we introduce a new metric called the Bandwidth Blocking Probability (BBP) to measure the quality of the service offered by the network. Simulation results show advantages of using the RDR method under a wide variety of traffic scenarios for both uniform and non-uniform traffic distributions compared to the traditional method. RDR reduces SPT by 45–90% for uniform traffic and 41–75% for non-uniform traffic. RDR reduces BP by 35–85% for uniform traffic and 30–75% for non-uniform traffic. Additionally, RDR lowers BBP by 31–73% for uniform traffic and 29–68% for non-uniform traffic.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks