Low Power FIR Filter Bank for EEG Processing Using Frequency-Response Masking Technique

Zhongxia Shang, Yang Zhao, Y. Lian
{"title":"Low Power FIR Filter Bank for EEG Processing Using Frequency-Response Masking Technique","authors":"Zhongxia Shang, Yang Zhao, Y. Lian","doi":"10.1109/ICDSP.2018.8631551","DOIUrl":null,"url":null,"abstract":"Different frequency bands in an electroencephalogram (EEG) signal contain different information. It is very helpful to divide an EEG signal by its sub-bands before applying further classification. FIR filter is one of the best choices for processing EEG signal because of its linear phase property. However, the implementation of an FIR filter requires more multipliers compared to its IIR counterpart. With frequency-response masking (FRM) technique, the multipliers needed to implement FIR filter can be reduced dramatically leading to a low power design. This paper proposes a filter bank structure for processing EEG signal based on the FRM technique. The design equations for all the sub-filters are derived and the condition for applying the proposed structure is given. A design example is included to illustrate the effectiveness of the proposed filter. It shows that the filter can fulfill the design objectives with 77% less multipliers comparing to the conventional FIR filter synthesizing technique.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"253 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Different frequency bands in an electroencephalogram (EEG) signal contain different information. It is very helpful to divide an EEG signal by its sub-bands before applying further classification. FIR filter is one of the best choices for processing EEG signal because of its linear phase property. However, the implementation of an FIR filter requires more multipliers compared to its IIR counterpart. With frequency-response masking (FRM) technique, the multipliers needed to implement FIR filter can be reduced dramatically leading to a low power design. This paper proposes a filter bank structure for processing EEG signal based on the FRM technique. The design equations for all the sub-filters are derived and the condition for applying the proposed structure is given. A design example is included to illustrate the effectiveness of the proposed filter. It shows that the filter can fulfill the design objectives with 77% less multipliers comparing to the conventional FIR filter synthesizing technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频率响应掩蔽技术的脑电信号处理低功耗FIR滤波器组
脑电图信号的不同频段包含不同的信息。在进一步分类之前,对脑电信号进行子带划分是很有帮助的。FIR滤波器由于其线性相位特性而成为处理脑电信号的最佳选择之一。然而,与IIR滤波器相比,FIR滤波器的实现需要更多的乘法器。使用频率响应掩蔽(FRM)技术,可以大大减少实现FIR滤波器所需的乘法器,从而实现低功耗设计。提出了一种基于FRM技术的脑电信号处理滤波器组结构。推导了各子滤波器的设计方程,并给出了应用该结构的条件。最后通过一个设计实例说明了该滤波器的有效性。结果表明,与传统的FIR滤波器合成技术相比,该滤波器的乘法器减少了77%,可以实现设计目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1