Synthesis and Fabrication of Polyvinyl Alcohol Nanofibers Based Capacitive Relative Humidity Sensor

H. Rashid
{"title":"Synthesis and Fabrication of Polyvinyl Alcohol Nanofibers Based Capacitive Relative Humidity Sensor","authors":"H. Rashid","doi":"10.33317/ssurj.303","DOIUrl":null,"url":null,"abstract":"  \nAbstract \nCapacitive humidity sensor based on Polyvinyl-alcohol (PVA) electrospun nanofibers was fabricated. PVA nanofibers were synthesized through versatile electrospinning technique. The synthesized nanofibers were heat treated and characterized via Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and thermogravimetric Analyzer (TGA) for structural, morphological and thermal properties. The fibers of admirable morphological structure were selected and deposited over interdigitated alumina electrodes for the investigation of Relative Humidity (RH) sensing characteristics. The variation in capacitance of the sensor with RH was measured 48pf at 32-92% RH. The dynamic response study confirmed the durability and stability of the sensor. The material exhibited quick response and recovery time and takes 13.27 seconds to measure the maximum RH value. Thus, the proposed sensing material has the potential of possible application in humidity sensing devices. \n ","PeriodicalId":341241,"journal":{"name":"Sir Syed University Research Journal of Engineering & Technology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sir Syed University Research Journal of Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33317/ssurj.303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

  Abstract Capacitive humidity sensor based on Polyvinyl-alcohol (PVA) electrospun nanofibers was fabricated. PVA nanofibers were synthesized through versatile electrospinning technique. The synthesized nanofibers were heat treated and characterized via Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and thermogravimetric Analyzer (TGA) for structural, morphological and thermal properties. The fibers of admirable morphological structure were selected and deposited over interdigitated alumina electrodes for the investigation of Relative Humidity (RH) sensing characteristics. The variation in capacitance of the sensor with RH was measured 48pf at 32-92% RH. The dynamic response study confirmed the durability and stability of the sensor. The material exhibited quick response and recovery time and takes 13.27 seconds to measure the maximum RH value. Thus, the proposed sensing material has the potential of possible application in humidity sensing devices.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚乙烯醇纳米纤维电容式相对湿度传感器的合成与制备
摘要制备了基于聚乙烯醇(PVA)静电纺纳米纤维的电容式湿度传感器。采用多用途静电纺丝技术合成了聚乙烯醇纳米纤维。对合成的纳米纤维进行热处理,并通过傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)和热重分析仪(TGA)对其结构、形态和热性能进行表征。选择具有良好形态结构的纤维,将其沉积在交叉指状氧化铝电极上,用于研究相对湿度(RH)传感特性。在32-92% RH下测量传感器的电容随RH的变化为48pf。动态响应研究证实了传感器的耐久性和稳定性。该材料具有快速的响应和恢复时间,测量最大RH值仅需13.27秒。因此,所提出的传感材料在湿度传感装置中具有潜在的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Performance Analysis of Improved FIR Filter using UltraScale FPGA Low-Cost Portable ECG Monitoring Device for Inaccessible Areas in Pakistan Effective & Efficient Implementation of OBE Framework within Constrained Pakistani Environment to Attain Desired Learning Outcomes Internet-of-Things based Home Automation System using Smart Phone Mechanical Properties of concrete by reused coarse aggregate with substitution of different percentages instead of natural aggregate and incorporation of Glass fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1