USST’s System for AutoSimTrans 2022

Zhu Hui, Yu Jun
{"title":"USST’s System for AutoSimTrans 2022","authors":"Zhu Hui, Yu Jun","doi":"10.18653/v1/2022.autosimtrans-1.7","DOIUrl":null,"url":null,"abstract":"This paper describes our submitted text-to-text Simultaneous translation (ST) system, which won the second place in the Chinese→English streaming translation task of AutoSimTrans 2022. Our baseline system is a BPE-based Transformer model trained with the PaddlePaddle framework. In our experiments, we employ data synthesis and ensemble approaches to enhance the base model. In order to bridge the gap between general domain and spoken domain, we select in-domain data from general corpus and mixed then with spoken corpus for mixed fine tuning. Finally, we adopt fixed wait-k policy to transfer our full-sentence translation model to simultaneous translation model. Experiments on the development data show that our system outperforms than the baseline system.","PeriodicalId":444422,"journal":{"name":"Proceedings of the Third Workshop on Automatic Simultaneous Translation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Automatic Simultaneous Translation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.autosimtrans-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes our submitted text-to-text Simultaneous translation (ST) system, which won the second place in the Chinese→English streaming translation task of AutoSimTrans 2022. Our baseline system is a BPE-based Transformer model trained with the PaddlePaddle framework. In our experiments, we employ data synthesis and ensemble approaches to enhance the base model. In order to bridge the gap between general domain and spoken domain, we select in-domain data from general corpus and mixed then with spoken corpus for mixed fine tuning. Finally, we adopt fixed wait-k policy to transfer our full-sentence translation model to simultaneous translation model. Experiments on the development data show that our system outperforms than the baseline system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
USST的AutoSimTrans系统2022
本文介绍了我们提交的文本到文本同声翻译(ST)系统,该系统在AutoSimTrans 2022中→英语流翻译任务中获得第二名。我们的基线系统是使用PaddlePaddle框架训练的基于bpe的Transformer模型。在我们的实验中,我们采用数据综合和集成方法来增强基础模型。为了弥补一般领域和语音领域之间的差距,我们从一般语料库中选择域内数据,并将其与语音语料库混合进行混合微调。最后,我们采用固定的wait-k策略将整句翻译模型转换为同声翻译模型。开发数据实验表明,系统性能优于基准系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
End-to-End Simultaneous Speech Translation with Pretraining and Distillation: Huawei Noah’s System for AutoSimTranS 2022 Findings of the Third Workshop on Automatic Simultaneous Translation BIT-Xiaomi’s System for AutoSimTrans 2022 System Description on Automatic Simultaneous Translation Workshop System Description on Third Automatic Simultaneous Translation Workshop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1