On the Use of Attention Map for Land Cover Mapping

S. Wilainuch, T. Kasetkasem, N. Sugino, T. Phatrapornnant, S. Marukatat
{"title":"On the Use of Attention Map for Land Cover Mapping","authors":"S. Wilainuch, T. Kasetkasem, N. Sugino, T. Phatrapornnant, S. Marukatat","doi":"10.1109/ECTI-CON49241.2020.9158220","DOIUrl":null,"url":null,"abstract":"The use of machine learning technology with remote sensing image analysis, especially for the land cover mapping requires experts and huge resources because every pixel in the training set must be labeled. This task is time-consuming and tedious. Therefore, a better strategy is to only identify what classes are present in an image without specifying where they are. In this way, a large number of remote sensing images can be labeled quickly. To achieve this goal, we employed the attention layer to create the attention map. The attention map is then further segmented to produce the final l and c over m ap where every pixel in an image will be labeled. We have tested the performance of our proposed algorithm with UC Merced Dataset and achieved 79.7 % in identifying the presence of land cover classes and 71.2 % accuracy in the labeling of all pixels","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON49241.2020.9158220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The use of machine learning technology with remote sensing image analysis, especially for the land cover mapping requires experts and huge resources because every pixel in the training set must be labeled. This task is time-consuming and tedious. Therefore, a better strategy is to only identify what classes are present in an image without specifying where they are. In this way, a large number of remote sensing images can be labeled quickly. To achieve this goal, we employed the attention layer to create the attention map. The attention map is then further segmented to produce the final l and c over m ap where every pixel in an image will be labeled. We have tested the performance of our proposed algorithm with UC Merced Dataset and achieved 79.7 % in identifying the presence of land cover classes and 71.2 % accuracy in the labeling of all pixels
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重点图在土地覆盖制图中的应用研究
利用机器学习技术进行遥感图像分析,特别是土地覆盖制图,需要专家和巨大的资源,因为训练集中的每个像素都必须被标记。这项工作既费时又乏味。因此,更好的策略是只识别图像中存在哪些类,而不指定它们在哪里。通过这种方式,可以快速地对大量遥感图像进行标记。为了实现这一目标,我们使用注意层来创建注意图。然后,注意力图被进一步分割,生成最终的l和c / m图,其中图像中的每个像素都将被标记。我们已经用UC Merced数据集测试了我们提出的算法的性能,在识别土地覆盖类别的存在方面达到了79.7%,在标记所有像素方面达到了71.2%的准确率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Tunable Biquadratic Digital Bandpass Filter Design for Spectrum Sensing in Cognitive Radio ElectricVehicle Simulator Using DC Drives Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using Nvidia Jetson Nano Enhancing CNN Based Knowledge Graph Embedding Algorithms Using Auxiliary Vectors: A Case Study of Wordnet Knowledge Graph A Study of Radiated EMI Predictions from Measured Common-mode Currents for Switching Power Supplies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1