S. Kubacki, D. Simoni, D. Lengani, M. Dellacasagrande, E. Dick
{"title":"Further development of an algebraic intermittency model for separation-induced transition under elevated free-stream turbulence","authors":"S. Kubacki, D. Simoni, D. Lengani, M. Dellacasagrande, E. Dick","doi":"10.29008/etc2021-512","DOIUrl":null,"url":null,"abstract":"A constitutive law for the Reynolds stresses during boundary layer laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, has been incorporated in an algebraic intermittency model. The objective is prediction improvement of transition in a separated layer under an elevated free-stream turbulence level. The modelling for such cases functions through additional production terms in the transport equations of turbulent kinetic energy and specific dissipation rate of a k-ω turbulence model. A sensor detects the front part of a separated layer and activates the production terms. These express the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. By the Klebanoff streaks, the breakdown is faster and the speed of breakdown increases by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level.","PeriodicalId":445987,"journal":{"name":"European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29008/etc2021-512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A constitutive law for the Reynolds stresses during boundary layer laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, has been incorporated in an algebraic intermittency model. The objective is prediction improvement of transition in a separated layer under an elevated free-stream turbulence level. The modelling for such cases functions through additional production terms in the transport equations of turbulent kinetic energy and specific dissipation rate of a k-ω turbulence model. A sensor detects the front part of a separated layer and activates the production terms. These express the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. By the Klebanoff streaks, the breakdown is faster and the speed of breakdown increases by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level.