Graph cut segmentation technique for MRI brain tumor extraction

Victor Chen, S. Ruan
{"title":"Graph cut segmentation technique for MRI brain tumor extraction","authors":"Victor Chen, S. Ruan","doi":"10.1109/IPTA.2010.5586730","DOIUrl":null,"url":null,"abstract":"In this paper, we present a graph cut application dealing with MRI brain image segmentation. We here propose another emerging approach of region segmentation based on graph cut which supports on the eigenspace characteristics and the perceptual grouping properties to classify brain tumoral tissue. Image segmentation is considered as solving the partitioning clustering problem by extracting the global impression of image. In the aim of providing visual and quantitative information for the diagnosis help in brain diseases, tumor features observed in image sequences must be extracted efficiently. We lastly extend this approach to perform volume segmentation by matching 2D contours set. This 3D representation provides a precise quantitative measure for following up the tumor brain evolution in the case of patients under pharmaceutical treatments.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we present a graph cut application dealing with MRI brain image segmentation. We here propose another emerging approach of region segmentation based on graph cut which supports on the eigenspace characteristics and the perceptual grouping properties to classify brain tumoral tissue. Image segmentation is considered as solving the partitioning clustering problem by extracting the global impression of image. In the aim of providing visual and quantitative information for the diagnosis help in brain diseases, tumor features observed in image sequences must be extracted efficiently. We lastly extend this approach to perform volume segmentation by matching 2D contours set. This 3D representation provides a precise quantitative measure for following up the tumor brain evolution in the case of patients under pharmaceutical treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图割分割技术在MRI脑肿瘤提取中的应用
在本文中,我们提出了一种用于MRI脑图像分割的图切应用。本文提出了另一种基于图割的区域分割方法,该方法利用特征空间特征和感知分组特性对脑肿瘤组织进行分类。图像分割被认为是通过提取图像的全局印象来解决分割聚类问题。为了给脑部疾病的诊断提供直观和定量的信息,必须有效地提取图像序列中观察到的肿瘤特征。最后,我们将该方法扩展到通过匹配二维轮廓集来进行体分割。这种3D表示为药物治疗患者的肿瘤脑演变提供了精确的定量测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1