Graph modeling based local descriptor selection via a hierarchical structure for biometric recognition

Xiaobo Zhang, Zhenan Sun, T. Tan
{"title":"Graph modeling based local descriptor selection via a hierarchical structure for biometric recognition","authors":"Xiaobo Zhang, Zhenan Sun, T. Tan","doi":"10.1109/IJCB.2011.6117517","DOIUrl":null,"url":null,"abstract":"Local descriptor based image representation is widely used in biometrics and has achieved promising results. We usually extract the most distinctive local descriptors for image sparse representation due to the large feature space and the redundancy among local descriptors. In this paper, we describe the local descriptor based image representation via a graph model, in which each node is a local descriptor (we call it “atom”) and the edges denote the relationship between atoms. Based on this model, a hierarchical structure is constructed to select the most distinctive local descriptors. Two-layer structure is adopted in our work, including local selection and global selection. In the first layer, L1/Lq regularized least square regression is adopted to reduce the redundancy of local descriptors in local regions. In the second layer, AdaBoost learning is performed for local descriptor selection based on the results of the first layer. We apply this method to long-range personal identification by using binocular regions. Our method can select the distinctive local descriptors and reduce the redundancy among them, and achieve encouraging results on the collected binocular database and CASIA-Iris-Distance. Particularly, our method is about 50 times faster than the traditional AdaBoost learning based method in the experiments.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Local descriptor based image representation is widely used in biometrics and has achieved promising results. We usually extract the most distinctive local descriptors for image sparse representation due to the large feature space and the redundancy among local descriptors. In this paper, we describe the local descriptor based image representation via a graph model, in which each node is a local descriptor (we call it “atom”) and the edges denote the relationship between atoms. Based on this model, a hierarchical structure is constructed to select the most distinctive local descriptors. Two-layer structure is adopted in our work, including local selection and global selection. In the first layer, L1/Lq regularized least square regression is adopted to reduce the redundancy of local descriptors in local regions. In the second layer, AdaBoost learning is performed for local descriptor selection based on the results of the first layer. We apply this method to long-range personal identification by using binocular regions. Our method can select the distinctive local descriptors and reduce the redundancy among them, and achieve encouraging results on the collected binocular database and CASIA-Iris-Distance. Particularly, our method is about 50 times faster than the traditional AdaBoost learning based method in the experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次结构的局部描述符选择图模型用于生物特征识别
基于局部描述子的图像表示在生物识别中得到了广泛的应用,并取得了良好的效果。由于图像的特征空间大,局部描述符之间存在冗余性,我们通常提取最具特征的局部描述符进行图像稀疏表示。在本文中,我们通过一个图模型描述了基于局部描述符的图像表示,其中每个节点是一个局部描述符(我们称之为“原子”),边表示原子之间的关系。在此基础上,构造了一个层次结构来选择最具特征的局部描述符。我们的工作采用两层结构,包括局部选择和全局选择。第一层采用L1/Lq正则化最小二乘回归,减少局部区域中局部描述符的冗余。在第二层,AdaBoost学习基于第一层的结果进行局部描述符选择。我们将这种方法应用于双眼区域的远距离个人识别。我们的方法可以选择有特色的局部描述符,并减少它们之间的冗余,在采集的双目数据库和CASIA-Iris-Distance上取得了令人鼓舞的结果。特别是在实验中,我们的方法比传统的基于AdaBoost学习的方法快50倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1