Machine Learning for QoE and QoS Control of Slices in a Wide Area Network Test Bed

F. Matera, E. Tego
{"title":"Machine Learning for QoE and QoS Control of Slices in a Wide Area Network Test Bed","authors":"F. Matera, E. Tego","doi":"10.23919/AEIT53387.2021.9626968","DOIUrl":null,"url":null,"abstract":"In this work an experimental investigation is reported about the use of machine learning, based both on a regressive approach and on artificial neural network, to evaluate the quality of experience from quality of service and other network measurements as packet losses, delays and traffic congestions, to control the performance of slices defined inside a wide area network test bed. Such a method allows the network to recover the best performance according to a knowledge defined network approach.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9626968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work an experimental investigation is reported about the use of machine learning, based both on a regressive approach and on artificial neural network, to evaluate the quality of experience from quality of service and other network measurements as packet losses, delays and traffic congestions, to control the performance of slices defined inside a wide area network test bed. Such a method allows the network to recover the best performance according to a knowledge defined network approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广域网试验台切片QoE与QoS控制的机器学习
在这项工作中,报告了一项关于使用机器学习的实验调查,该研究基于回归方法和人工神经网络,以评估服务质量和其他网络测量(如数据包丢失、延迟和交通拥堵)的体验质量,以控制广域网测试平台内定义的切片的性能。这种方法允许网络根据知识定义的网络方法恢复最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wind power forecasting models for very short-term operation of power systems MOSFETs Selection in Front-end Active Bridge Rectifier On Comparing Regressive and Artificial Neural Network Methods for Power System Forecast FExWaveS application for voltage dips origin assessment: optimization of the tool in views of its integration into the QuEEN monitoring system OPF model with dynamic security constraints: a state of the art review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1