{"title":"Design of New Minimum Decoding Complexity Quasi-Orthogonal Space-Time Block Code for 8 Transmit Antennas","authors":"Changhyeon Chae, Daewon Choi, T. Jung","doi":"10.1093/ietfec/e91-a.10.2990","DOIUrl":null,"url":null,"abstract":"In this paper, a new full-rate space-time block code (STBC) possessing a quasi-orthogonal (QO) property is proposed for QAM and 8 transmit antennas. This code is designed by serially concatenating a real constellation-rotating precoder with the Alamouti scheme. The QO property enables a maximum likelihood (ML) decoding to only require joint detection of four groups of real symbols at a receiver. Hence, this code has an identical and greatly reduced ML decoding complexity with the conventional minimum decoding complexity QO-STBC (MDC- QO-STBC) and the Xian's QO-STBC, respectively. Especially, the proposed QO-STBC is guaranteed to enjoy full diversity for general QAM unlike the existing MDC-QO-STBC presented for only QPSK. By simulation results, we show that the proposed code exhibits the identical and slightly degrade error performance with the existing MDC-QO-STBC for 4-QAM and the Xian's QO-STBC for 4 and 16-QAM, respectively.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ietfec/e91-a.10.2990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, a new full-rate space-time block code (STBC) possessing a quasi-orthogonal (QO) property is proposed for QAM and 8 transmit antennas. This code is designed by serially concatenating a real constellation-rotating precoder with the Alamouti scheme. The QO property enables a maximum likelihood (ML) decoding to only require joint detection of four groups of real symbols at a receiver. Hence, this code has an identical and greatly reduced ML decoding complexity with the conventional minimum decoding complexity QO-STBC (MDC- QO-STBC) and the Xian's QO-STBC, respectively. Especially, the proposed QO-STBC is guaranteed to enjoy full diversity for general QAM unlike the existing MDC-QO-STBC presented for only QPSK. By simulation results, we show that the proposed code exhibits the identical and slightly degrade error performance with the existing MDC-QO-STBC for 4-QAM and the Xian's QO-STBC for 4 and 16-QAM, respectively.