Deep-learning-based interpretability and the ExaMode project in histopathology image analysis

Henning Müller, M. Atzori
{"title":"Deep-learning-based interpretability and the ExaMode project in histopathology image analysis","authors":"Henning Müller, M. Atzori","doi":"10.47184/tp.2023.01.05","DOIUrl":null,"url":null,"abstract":"With digital clinical workflows in histopathology departments, the possibility to use machine-learning-based decision support is increasing. Still, there are many challenges despite often good results on retrospective data. Explainable AI can help to find bias in data and also integrated decision support with other available clinical data. The ExaMode project has implemented many tools and automatic pipelines for such decision support. Most of the algorithms are available for research use and can thus be of help for other researchers in the domain.","PeriodicalId":126763,"journal":{"name":"Trillium Pathology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trillium Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47184/tp.2023.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With digital clinical workflows in histopathology departments, the possibility to use machine-learning-based decision support is increasing. Still, there are many challenges despite often good results on retrospective data. Explainable AI can help to find bias in data and also integrated decision support with other available clinical data. The ExaMode project has implemented many tools and automatic pipelines for such decision support. Most of the algorithms are available for research use and can thus be of help for other researchers in the domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组织病理学图像分析中基于深度学习的可解释性和ExaMode项目
随着组织病理学部门的数字化临床工作流程,使用基于机器学习的决策支持的可能性正在增加。尽管在回顾性数据上取得了良好的结果,但仍然存在许多挑战。可解释的人工智能可以帮助发现数据中的偏见,并与其他可用的临床数据集成决策支持。ExaMode项目已经为这种决策支持实现了许多工具和自动管道。大多数算法可用于研究使用,因此可以帮助其他研究人员在该领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational pathology for nephropathology Molecular pathological analysis in routine diagnostic Successful deployment of an Artificial Intelligence solution for primary diagnosis of prostate biopsies in clinical practice What happened in Digital and Computational Pathology at the European Congress of Pathology, Basel, 2022? Deep-learning-based interpretability and the ExaMode project in histopathology image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1