Preparation and characterization of MWCNT dispersed in various solutions

M. A. Farehanim, U. Hashim, S. Norhafiezah, M. F. Fatin, R. Ayub, N. Soin, F. Ibrahim
{"title":"Preparation and characterization of MWCNT dispersed in various solutions","authors":"M. A. Farehanim, U. Hashim, S. Norhafiezah, M. F. Fatin, R. Ayub, N. Soin, F. Ibrahim","doi":"10.1109/SMELEC.2014.6920909","DOIUrl":null,"url":null,"abstract":"In modern technology of biomedical applications, the potential of carbon nanotubes based materials has been widely used in recent years. In this paper, the preparation of the multi wall carbon nanotube (MWCNT) with biocompatibility of these composite are investigated, although many aspects have been studied separately by researchers. We have chosen three different solvents; namely chitosan, Sodium Dodecyl Sulfate (SDS), and isopropyl alcohol (IPA) to mix with MWCNT respectively. This functionalized CNT with carboxylic (COOH) groups were prepared in three different liquid forms and further will be dropped on fabricated Interdigitated electrodes (IDEs) as devices. Scanning electron microscopy (SEM) was used to identify the structures effect of synthesized MWCNT in different solvents. The conductivities show the ability of chitosan and SDS to be used as a solvent in order to synthesis MWCNTs and further will be used as a biosensor.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In modern technology of biomedical applications, the potential of carbon nanotubes based materials has been widely used in recent years. In this paper, the preparation of the multi wall carbon nanotube (MWCNT) with biocompatibility of these composite are investigated, although many aspects have been studied separately by researchers. We have chosen three different solvents; namely chitosan, Sodium Dodecyl Sulfate (SDS), and isopropyl alcohol (IPA) to mix with MWCNT respectively. This functionalized CNT with carboxylic (COOH) groups were prepared in three different liquid forms and further will be dropped on fabricated Interdigitated electrodes (IDEs) as devices. Scanning electron microscopy (SEM) was used to identify the structures effect of synthesized MWCNT in different solvents. The conductivities show the ability of chitosan and SDS to be used as a solvent in order to synthesis MWCNTs and further will be used as a biosensor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分散在不同溶液中的MWCNT的制备和表征
在现代生物医学应用技术中,碳纳米管基材料的潜力近年来得到了广泛的应用。本文对具有生物相容性的多壁碳纳米管(MWCNT)的制备进行了研究,尽管有许多方面的研究是单独进行的。我们选择了三种不同的溶剂;即壳聚糖、十二烷基硫酸钠(SDS)和异丙醇(IPA)分别与MWCNT混合。这种具有羧基(COOH)基团的功能化碳纳米管以三种不同的液体形式制备,并进一步将其作为器件滴在制备的交叉指状电极(IDEs)上。利用扫描电子显微镜(SEM)对合成的MWCNT在不同溶剂中的结构效应进行了表征。这些电导率表明壳聚糖和SDS可以作为溶剂来合成MWCNTs,并进一步用作生物传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Controlling growth rate of ultra-thin Silicon Dioxide layer by incorporating nitrogen gas during dry thermal oxidation Theoretical study of on-chip meander line resistor to improve Q-factor Epitaxial lift-off of large-area GaAs multi-junction solar cells for high efficiency clean and portable energy power generation Synthesis and characterization of carbon nano structures on Gallium Phosphate Process development of 40 nm silicon nanogap for sensor application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1