All-Digital Full-Precision In-SRAM Computing with Reduction Tree for Energy-Efficient MAC Operations

Dengfeng Wanq, Zhi Li, C. Chang, Weifeng He, Yanan Sun
{"title":"All-Digital Full-Precision In-SRAM Computing with Reduction Tree for Energy-Efficient MAC Operations","authors":"Dengfeng Wanq, Zhi Li, C. Chang, Weifeng He, Yanan Sun","doi":"10.1109/ICTA56932.2022.9963042","DOIUrl":null,"url":null,"abstract":"This paper proposes an all-digital full-precision static random-access memory based computing-in-memory (SRAM-CIM) macro with compressor-based reduction tree (CRT) for energy-efficient multiplication-and-accumulation (MAC) operations. The proposed CRT composed of hybrid 28T/18T/14T 3–2 compressors (full adders, FAs) and 18T half adders (HAs) with lower supply voltage consumes lower power compared to conventional binary adder tree (BAT). The experimental results show that the power and area of the proposed CRT are reduced by up to 56.15% and 28.11%, respectively, as compared to BAT. The proposed SRAM-CIM macro with CRT achieves 78.07% higher energy efficiency per unit area, compared to previous all-digital full-precision SRAM-CIM macro with BAT.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an all-digital full-precision static random-access memory based computing-in-memory (SRAM-CIM) macro with compressor-based reduction tree (CRT) for energy-efficient multiplication-and-accumulation (MAC) operations. The proposed CRT composed of hybrid 28T/18T/14T 3–2 compressors (full adders, FAs) and 18T half adders (HAs) with lower supply voltage consumes lower power compared to conventional binary adder tree (BAT). The experimental results show that the power and area of the proposed CRT are reduced by up to 56.15% and 28.11%, respectively, as compared to BAT. The proposed SRAM-CIM macro with CRT achieves 78.07% higher energy efficiency per unit area, compared to previous all-digital full-precision SRAM-CIM macro with BAT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
节能MAC操作的全数字全精度sram计算与约简树
本文提出了一种基于全数字全精度静态随机存取存储器的内存中计算(SRAM-CIM)宏,该宏具有基于压缩器的约简树(CRT),用于节能的乘法和累积(MAC)操作。该CRT由28T/18T/14T 3-2混合式压缩器(全加法器,FAs)和18T半加法器(HAs)组成,与传统的二进制加法器树(BAT)相比,功耗更低,电源电压更低。实验结果表明,与BAT相比,所提出的CRT的功率和面积分别降低了56.15%和28.11%。与之前采用BAT的全数字全精度SRAM-CIM宏相比,采用CRT的SRAM-CIM宏的单位面积能效提高了78.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 4.2-to-5.6 GHz Transformer-Based PMOS-only Stacked-gm VCO in 28-nm CMOS A 0.58-pJ/bit 56-Gb/s PAM-4 Optical Receiver Frontend with an Envelope Tracker for Co-Packaged Optics in 40-nm CMOS CVD Monolayer tungsten-based PMOS Transistor with high performance at Vds = -1 V A 1000 fps Spiking Neural Network Tracking Algorithm for On-Chip Processing of Dynamic Vision Sensor Data Hardware Based RISC-V Instruction Set Randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1