Improved inter mode decision for H.264/AVC using weighted prediction

Amrita Ganguly, A. Mahanta
{"title":"Improved inter mode decision for H.264/AVC using weighted prediction","authors":"Amrita Ganguly, A. Mahanta","doi":"10.5220/0003517300730078","DOIUrl":null,"url":null,"abstract":"H.264/AVC video coding standard outperforms former standards in terms of coding efficiency but at the expense of higher computation complexity. Of all the encoding elements in H.264, inter prediction is computationally most intensive and thus adds to the computational burden for the encoder. In this paper, we propose a fast inter prediction algorithm for JVT video coding standard H.264/ AVC. Prior to performing the motion estimation for inter prediction, characteristics like stationarity and homogeneity of each macroblock is determined. The macroblocks correlation with neighboring macroblocks in respect of predicted motion vectors and encoding modes are studied. Weights are assigned for these parameters and the final mode is selected based upon these weights. The average video encoding time reduction in the proposed method is 70% compared to the JVT benchmark JM12.4 while maintaining similar PSNR and bit rate. Experimental results for various test sequences at different resolutions are presented to show the effectiveness of the proposed method.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003517300730078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

H.264/AVC video coding standard outperforms former standards in terms of coding efficiency but at the expense of higher computation complexity. Of all the encoding elements in H.264, inter prediction is computationally most intensive and thus adds to the computational burden for the encoder. In this paper, we propose a fast inter prediction algorithm for JVT video coding standard H.264/ AVC. Prior to performing the motion estimation for inter prediction, characteristics like stationarity and homogeneity of each macroblock is determined. The macroblocks correlation with neighboring macroblocks in respect of predicted motion vectors and encoding modes are studied. Weights are assigned for these parameters and the final mode is selected based upon these weights. The average video encoding time reduction in the proposed method is 70% compared to the JVT benchmark JM12.4 while maintaining similar PSNR and bit rate. Experimental results for various test sequences at different resolutions are presented to show the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用加权预测改进H.264/AVC模式间决策
H.264/AVC视频编码标准在编码效率方面优于以前的标准,但代价是计算复杂度更高。在H.264的所有编码元素中,内部预测是计算量最大的,因此增加了编码器的计算负担。针对JVT视频编码标准H.264/ AVC,提出了一种快速互预测算法。在进行内部预测的运动估计之前,需要确定每个宏块的平稳性和均匀性等特征。研究了宏块与相邻宏块在预测运动矢量和编码方式方面的相关性。为这些参数分配权重,并根据这些权重选择最终模式。与JVT基准JM12.4相比,该方法在保持相似的PSNR和比特率的情况下,平均视频编码时间减少了70%。实验结果表明了该方法在不同分辨率下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent topic visual language model for object categorization Optimal combination of low-level features for surveillance object retrieval Managing multiple media streams in HTML5: The IEEE 1599-2008 case study Automatic sound restoration system concepts and design Visual AER-based processing with convolutions for a parallel supercomputer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1