A Maximin $\Phi_{p}$-Efficient Design for Multivariate GLM

Yiou Li, Lulu Kang, Xinwei Deng
{"title":"A Maximin $\\Phi_{p}$-Efficient Design for Multivariate GLM","authors":"Yiou Li, Lulu Kang, Xinwei Deng","doi":"10.5705/ss.202020.0278","DOIUrl":null,"url":null,"abstract":"Experimental designs for a generalized linear model (GLM) often depend on the specification of the model, including the link function, the predictors, and unknown parameters, such as the regression coefficients. To deal with uncertainties of these model specifications, it is important to construct optimal designs with high efficiency under such uncertainties. Existing methods such as Bayesian experimental designs often use prior distributions of model specifications to incorporate model uncertainties into the design criterion. Alternatively, one can obtain the design by optimizing the worst-case design efficiency with respect to uncertainties of model specifications. In this work, we propose a new Maximin $\\Phi_p$-Efficient (or Mm-$\\Phi_p$ for short) design which aims at maximizing the minimum $\\Phi_p$-efficiency under model uncertainties. Based on the theoretical properties of the proposed criterion, we develop an efficient algorithm with sound convergence properties to construct the Mm-$\\Phi_p$ design. The performance of the proposed Mm-$\\Phi_p$ design is assessed through several numerical examples.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5705/ss.202020.0278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Experimental designs for a generalized linear model (GLM) often depend on the specification of the model, including the link function, the predictors, and unknown parameters, such as the regression coefficients. To deal with uncertainties of these model specifications, it is important to construct optimal designs with high efficiency under such uncertainties. Existing methods such as Bayesian experimental designs often use prior distributions of model specifications to incorporate model uncertainties into the design criterion. Alternatively, one can obtain the design by optimizing the worst-case design efficiency with respect to uncertainties of model specifications. In this work, we propose a new Maximin $\Phi_p$-Efficient (or Mm-$\Phi_p$ for short) design which aims at maximizing the minimum $\Phi_p$-efficiency under model uncertainties. Based on the theoretical properties of the proposed criterion, we develop an efficient algorithm with sound convergence properties to construct the Mm-$\Phi_p$ design. The performance of the proposed Mm-$\Phi_p$ design is assessed through several numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个Maximin $\Phi_{p}$-高效的多元GLM设计
广义线性模型(GLM)的实验设计通常取决于模型的规格,包括链接函数、预测因子和未知参数,如回归系数。为了处理这些模型规格的不确定性,在这种不确定性下构建高效的优化设计是很重要的。现有方法如贝叶斯实验设计通常使用模型规格的先验分布将模型不确定性纳入设计准则。另一种方法是,根据模型规格的不确定性对最坏情况下的设计效率进行优化。在这项工作中,我们提出了一种新的Maximin $\Phi_p$- efficient(或简称Mm-$\Phi_p$)设计,旨在最大化模型不确定性下的最小$\Phi_p$-efficiency。基于该准则的理论性质,我们开发了一种具有良好收敛性的高效算法来构造Mm-$\Phi_p$设计。通过几个数值算例对所提出的Mm-$\Phi_p$设计的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1