SV - VLSP 2021: Combine Attentive Statistical Pooling-based Xvector and Pretrained ECAPA-TDNN for Vietnamese Text-Independent Speaker Verification

T. Thang, Huynh Thi Thanh Binh
{"title":"SV - VLSP 2021: Combine Attentive Statistical Pooling-based Xvector and Pretrained ECAPA-TDNN for Vietnamese Text-Independent Speaker Verification","authors":"T. Thang, Huynh Thi Thanh Binh","doi":"10.25073/2588-1086/vnucsce.320","DOIUrl":null,"url":null,"abstract":"Recently, Xvectors and ECAPA-TDNN have been considered state-of-the-art models in designing speaker verification systems. This paper proposes a novel approach that combines Attentive statistic pooling-based Xvector and pre-trained ECAPA-TDNN for Vietnamese speaker verification. Experiments are conducted on various recent Vietnamese speech datasets. The results portrayed that our proposed combination outperformed all constitutive models with 4% to 37% relative EER improvement and ranked second place in Task 2 of the 2021 VLSP Speaker Verification competition.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, Xvectors and ECAPA-TDNN have been considered state-of-the-art models in designing speaker verification systems. This paper proposes a novel approach that combines Attentive statistic pooling-based Xvector and pre-trained ECAPA-TDNN for Vietnamese speaker verification. Experiments are conducted on various recent Vietnamese speech datasets. The results portrayed that our proposed combination outperformed all constitutive models with 4% to 37% relative EER improvement and ranked second place in Task 2 of the 2021 VLSP Speaker Verification competition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SV - VLSP 2021:结合细心统计池的Xvector和预训练ECAPA-TDNN的越南语文本独立说话人验证
最近,Xvectors和ECAPA-TDNN被认为是设计扬声器验证系统的最先进模型。本文提出了一种将基于细心统计池的Xvector和预训练ECAPA-TDNN相结合的越南语说话人验证方法。在不同的越南语语音数据集上进行了实验。结果表明,我们提出的组合以4%至37%的相对EER改进优于所有本构模型,并在2021年VLSP演讲者验证竞赛的任务2中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1