K. Wegner, J. Stankowski, O. Stankiewicz, Hubert Żabiński, K. Klimaszewski, T. Grajek
{"title":"High Frame-Rate Virtual View Synthesis Based on Low Frame-Rate Input","authors":"K. Wegner, J. Stankowski, O. Stankiewicz, Hubert Żabiński, K. Klimaszewski, T. Grajek","doi":"10.1109/MMSP48831.2020.9287076","DOIUrl":null,"url":null,"abstract":"In the paper we investigated the methods of obtaining high-resolution, high frame-rate virtual views based on low frame-rate cameras for applications in high-performance multiview systems. We demonstrated how to set up synchronization for multiview acquisition systems to record required data and then how to process the data to create virtual views at a higher frame rate, while preserving high resolution of the views. We analyzed various ways to combine time frame interpolation with an alternative side-view synthesis technique which allows us to create a required high frame-rate video of a virtual viewpoint. The results prove that the proposed methods are capable of delivering the expected high-quality, high-resolution and high frame-rate virtual views.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper we investigated the methods of obtaining high-resolution, high frame-rate virtual views based on low frame-rate cameras for applications in high-performance multiview systems. We demonstrated how to set up synchronization for multiview acquisition systems to record required data and then how to process the data to create virtual views at a higher frame rate, while preserving high resolution of the views. We analyzed various ways to combine time frame interpolation with an alternative side-view synthesis technique which allows us to create a required high frame-rate video of a virtual viewpoint. The results prove that the proposed methods are capable of delivering the expected high-quality, high-resolution and high frame-rate virtual views.