J. C. Ortíz-Bayliss, H. Terashima-Marín, P. Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón
{"title":"A neuro-evolutionary approach to produce general hyper-heuristics for the dynamic variable ordering in hard binary constraint satisfaction problems","authors":"J. C. Ortíz-Bayliss, H. Terashima-Marín, P. Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón","doi":"10.1145/1569901.1570174","DOIUrl":null,"url":null,"abstract":"This paper introduces a neuro-evolutionary approach to produce hyper-heuristics for the dynamic variable ordering for hard binary constraint satisfaction problems. The model uses a GA to evolve a population of neural networks architectures and parameters. For every cycle in the GA process, the new networks are trained using backpropagation. When the process is over, the best trained individual in the last population of neural networks represents the general hyper-heuristic.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper introduces a neuro-evolutionary approach to produce hyper-heuristics for the dynamic variable ordering for hard binary constraint satisfaction problems. The model uses a GA to evolve a population of neural networks architectures and parameters. For every cycle in the GA process, the new networks are trained using backpropagation. When the process is over, the best trained individual in the last population of neural networks represents the general hyper-heuristic.