A neuro-evolutionary approach to produce general hyper-heuristics for the dynamic variable ordering in hard binary constraint satisfaction problems

J. C. Ortíz-Bayliss, H. Terashima-Marín, P. Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón
{"title":"A neuro-evolutionary approach to produce general hyper-heuristics for the dynamic variable ordering in hard binary constraint satisfaction problems","authors":"J. C. Ortíz-Bayliss, H. Terashima-Marín, P. Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón","doi":"10.1145/1569901.1570174","DOIUrl":null,"url":null,"abstract":"This paper introduces a neuro-evolutionary approach to produce hyper-heuristics for the dynamic variable ordering for hard binary constraint satisfaction problems. The model uses a GA to evolve a population of neural networks architectures and parameters. For every cycle in the GA process, the new networks are trained using backpropagation. When the process is over, the best trained individual in the last population of neural networks represents the general hyper-heuristic.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper introduces a neuro-evolutionary approach to produce hyper-heuristics for the dynamic variable ordering for hard binary constraint satisfaction problems. The model uses a GA to evolve a population of neural networks architectures and parameters. For every cycle in the GA process, the new networks are trained using backpropagation. When the process is over, the best trained individual in the last population of neural networks represents the general hyper-heuristic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硬二值约束满足问题中动态变量排序产生一般超启发式的神经进化方法
本文介绍了一种神经进化方法,对硬二值约束满足问题的动态变量排序产生超启发式。该模型使用遗传算法来进化神经网络的结构和参数。对于遗传算法过程中的每个周期,使用反向传播方法训练新网络。当这个过程结束时,最后一个神经网络群体中训练最好的个体代表一般的超启发式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1