A study of mobile advertisement recommendation using real big data from AdLocus

T. Wu, Shih-Hau Fang, Yong-Bin Wu, Cheng-Tse Wu, Jen-Wei Huang, Yu Tsao
{"title":"A study of mobile advertisement recommendation using real big data from AdLocus","authors":"T. Wu, Shih-Hau Fang, Yong-Bin Wu, Cheng-Tse Wu, Jen-Wei Huang, Yu Tsao","doi":"10.1109/GCCE.2016.7800364","DOIUrl":null,"url":null,"abstract":"AdLocus is an APP developed by HyXen Company for mobile advertisements. This advertising software can push the message to the target users within specified locations. Based on the real big data provided by AdLocus, we design a dynamic advertisements recommendation system to increase the advertising efficiency. The proposed method uses the regression models and the click probability to recommend the amount of mobile advertisements for every 30 minutes. The results show that our recommendation can efficiently raise the successful clicking rate to satisfy the required clicks number. Moreover, the proposed method avoids the redundant advertisements to reduce the system cost.","PeriodicalId":416104,"journal":{"name":"2016 IEEE 5th Global Conference on Consumer Electronics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 5th Global Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2016.7800364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

AdLocus is an APP developed by HyXen Company for mobile advertisements. This advertising software can push the message to the target users within specified locations. Based on the real big data provided by AdLocus, we design a dynamic advertisements recommendation system to increase the advertising efficiency. The proposed method uses the regression models and the click probability to recommend the amount of mobile advertisements for every 30 minutes. The results show that our recommendation can efficiently raise the successful clicking rate to satisfy the required clicks number. Moreover, the proposed method avoids the redundant advertisements to reduce the system cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AdLocus真实大数据的移动广告推荐研究
AdLocus是海讯公司开发的一款移动广告APP。这个广告软件可以将信息推送到指定位置的目标用户。基于AdLocus提供的真实大数据,我们设计了动态广告推荐系统,提高广告投放效率。该方法利用回归模型和点击概率来推荐每30分钟的移动广告投放量。结果表明,我们的推荐方法能够有效地提高成功点击率,满足要求的点击次数。此外,该方法避免了冗余的广告,降低了系统成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High power factor boost PFC controller with feedforward adaptive on-time control Comprehensive deformed map generation for wristwatch-type wearable devices based on landmark-based partitioning Analysis of fill-in-blank problem solution results in Java programming course Accuracy improvement in human detection using HOG features on train-mounted camera New intelligent glass curtain with IT2FLC for conversion efficiency enhancement of PV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1