{"title":"Multi-lingual and Cross-genre Discourse Unit Segmentation","authors":"Peter Bourgonje, Robin Schäfer","doi":"10.18653/V1/W19-2714","DOIUrl":null,"url":null,"abstract":"We describe a series of experiments applied to data sets from different languages and genres annotated for coherence relations according to different theoretical frameworks. Specifically, we investigate the feasibility of a unified (theory-neutral) approach toward discourse segmentation; a process which divides a text into minimal discourse units that are involved in s coherence relation. We apply a RandomForest and an LSTM based approach for all data sets, and we improve over a simple baseline assuming simple sentence or clause-like segmentation. Performance however varies a lot depending on language, and more importantly genre, with f-scores ranging from 73.00 to 94.47.","PeriodicalId":243254,"journal":{"name":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/W19-2714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We describe a series of experiments applied to data sets from different languages and genres annotated for coherence relations according to different theoretical frameworks. Specifically, we investigate the feasibility of a unified (theory-neutral) approach toward discourse segmentation; a process which divides a text into minimal discourse units that are involved in s coherence relation. We apply a RandomForest and an LSTM based approach for all data sets, and we improve over a simple baseline assuming simple sentence or clause-like segmentation. Performance however varies a lot depending on language, and more importantly genre, with f-scores ranging from 73.00 to 94.47.