Multi-lingual and Cross-genre Discourse Unit Segmentation

Peter Bourgonje, Robin Schäfer
{"title":"Multi-lingual and Cross-genre Discourse Unit Segmentation","authors":"Peter Bourgonje, Robin Schäfer","doi":"10.18653/V1/W19-2714","DOIUrl":null,"url":null,"abstract":"We describe a series of experiments applied to data sets from different languages and genres annotated for coherence relations according to different theoretical frameworks. Specifically, we investigate the feasibility of a unified (theory-neutral) approach toward discourse segmentation; a process which divides a text into minimal discourse units that are involved in s coherence relation. We apply a RandomForest and an LSTM based approach for all data sets, and we improve over a simple baseline assuming simple sentence or clause-like segmentation. Performance however varies a lot depending on language, and more importantly genre, with f-scores ranging from 73.00 to 94.47.","PeriodicalId":243254,"journal":{"name":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/W19-2714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We describe a series of experiments applied to data sets from different languages and genres annotated for coherence relations according to different theoretical frameworks. Specifically, we investigate the feasibility of a unified (theory-neutral) approach toward discourse segmentation; a process which divides a text into minimal discourse units that are involved in s coherence relation. We apply a RandomForest and an LSTM based approach for all data sets, and we improve over a simple baseline assuming simple sentence or clause-like segmentation. Performance however varies a lot depending on language, and more importantly genre, with f-scores ranging from 73.00 to 94.47.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多语言跨体裁语篇单元分割
我们描述了一系列应用于不同语言和体裁数据集的实验,这些数据集根据不同的理论框架注释了连贯关系。具体来说,我们研究了统一(理论中立)的话语分割方法的可行性;将语篇划分为最小语篇单位的过程,这些语篇单位涉及到连贯关系。我们对所有数据集应用随机森林和基于LSTM的方法,并在假设简单句子或类子句分割的简单基线上进行改进。然而,表现因语言而异,更重要的是类型,f分在73.00到94.47之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards the Data-driven System for Rhetorical Parsing of Russian Texts Nuclearity in RST and signals of coherence relations ToNy: Contextual embeddings for accurate multilingual discourse segmentation of full documents Toward Cross-theory Discourse Relation Annotation Towards discourse annotation and sentiment analysis of the Basque Opinion Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1