{"title":"Single-Image Super-Resolution via Multiple Matrix-Valued Kernel Regression","authors":"Yi Tang, Zuo Jiang, Junhua Chen","doi":"10.1109/ICMLC48188.2019.8949261","DOIUrl":null,"url":null,"abstract":"Single-image super-resolution focuses on learning a mapping to recover high-resolution images from given low-resolution images with the help of a set of paired images. Matrix-valued operators serve as an efficient mapping to super-resolve low-resolution images. However, most existed matrix-valued based super-resolution algorithms limit matrix-valued operators as linear mappings. Multiple matrix-valued operators based algorithm is introduced for improving the performance of matrix-value operators in single-image super-resolution. Taking advantages of the non-linear style of multiple matrix-valued operators, we have more accurate super-resolved images. The experimental results show the efficiency and effectiveness of the reported multiple matrix-valued operator learning based super-resolution algorithm.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Single-image super-resolution focuses on learning a mapping to recover high-resolution images from given low-resolution images with the help of a set of paired images. Matrix-valued operators serve as an efficient mapping to super-resolve low-resolution images. However, most existed matrix-valued based super-resolution algorithms limit matrix-valued operators as linear mappings. Multiple matrix-valued operators based algorithm is introduced for improving the performance of matrix-value operators in single-image super-resolution. Taking advantages of the non-linear style of multiple matrix-valued operators, we have more accurate super-resolved images. The experimental results show the efficiency and effectiveness of the reported multiple matrix-valued operator learning based super-resolution algorithm.