Masking in chrominance channels of natural images — Data, analysis, and prediction

V. Kitanovski, Marius Pedersen
{"title":"Masking in chrominance channels of natural images — Data, analysis, and prediction","authors":"V. Kitanovski, Marius Pedersen","doi":"10.1109/ISPA.2017.8073583","DOIUrl":null,"url":null,"abstract":"This paper addresses the visual masking that occurs in the chrominance channels of natural images. We present results from a psychophysical experiment designed to obtain local thresholds of just noticeable log-Gabor distortion in the Cr and Cb channels of natural images. We analyzed the data and investigated the correlation between several low-level image features and the collected thresholds. As expected, features like variance, entropy, or edge density were correlated relatively high with the thresholds. We evaluated the performance of linear and non-linear regression (using neural networks and support vector machines) for thresholds prediction from multiple global image features; we also fitted a modified Watson-Solomon's computational model (based on log-Gabor features) for thresholds prediction. The evaluation showed that neural networks and support vector machines are most suitable for thresholds prediction. The computational model performed reasonably well, with further prospects of its improvement.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper addresses the visual masking that occurs in the chrominance channels of natural images. We present results from a psychophysical experiment designed to obtain local thresholds of just noticeable log-Gabor distortion in the Cr and Cb channels of natural images. We analyzed the data and investigated the correlation between several low-level image features and the collected thresholds. As expected, features like variance, entropy, or edge density were correlated relatively high with the thresholds. We evaluated the performance of linear and non-linear regression (using neural networks and support vector machines) for thresholds prediction from multiple global image features; we also fitted a modified Watson-Solomon's computational model (based on log-Gabor features) for thresholds prediction. The evaluation showed that neural networks and support vector machines are most suitable for thresholds prediction. The computational model performed reasonably well, with further prospects of its improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然图像的色度通道中的掩蔽。数据、分析和预测
本文讨论了在自然图像的色度通道中发生的视觉掩蔽。我们展示了一项心理物理实验的结果,该实验旨在获得自然图像的Cr和Cb通道中仅显着的log-Gabor失真的局部阈值。我们分析了数据,并研究了几个低水平图像特征与收集的阈值之间的相关性。正如预期的那样,方差、熵或边缘密度等特征与阈值的相关性相对较高。我们评估了线性和非线性回归(使用神经网络和支持向量机)对多个全局图像特征的阈值预测的性能;我们还拟合了一个改进的Watson-Solomon计算模型(基于log-Gabor特征)用于阈值预测。结果表明,神经网络和支持向量机最适合用于阈值预测。该计算模型表现相当好,并有进一步改进的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time chest compression rate detection from smartphone video Image registration with subpixel accuracy of DCT-sign phase correlation with real subpixel shifted images Choosing an accurate number of mel frequency cepstral coefficients for audio classification purpose Blind determination of quality of JPEG compressed images Differentiating ureter and arteries in the pelvic via endoscope using deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1