Niklas Strauß, Max Berrendorf, Tom Haider, M. Schubert
{"title":"A Comparison of Ambulance Redeployment Systems on Real-World Data","authors":"Niklas Strauß, Max Berrendorf, Tom Haider, M. Schubert","doi":"10.1109/ICDMW58026.2022.00010","DOIUrl":null,"url":null,"abstract":"Modern Emergency Medical Services (EMS) benefit from real-time sensor information in various ways as they provide up-to-date location information and help assess current local emergency risks. A critical part of EMS is dynamic ambulance redeployment, i.e., the task of assigning idle ambulances to base stations throughout a community. Although there has been a considerable effort on methods to optimize emergency response systems, a comparison of proposed methods is generally difficult as reported results are mostly based on artificial and proprietary test beds. In this paper, we present a benchmark simulation environment for dynamic ambulance redeployment based on real emergency data from the city of San Francisco. Our proposed simulation environment is highly scalable and is compatible with modern reinforcement learning frameworks. We provide a comparative study of several state-of-the-art methods for various metrics. Results indicate that even simple baseline algorithms can perform considerably well in close-to-realistic settings. The code of our simulator is openly available at https://github.com/niklasdbs/ambusim.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Modern Emergency Medical Services (EMS) benefit from real-time sensor information in various ways as they provide up-to-date location information and help assess current local emergency risks. A critical part of EMS is dynamic ambulance redeployment, i.e., the task of assigning idle ambulances to base stations throughout a community. Although there has been a considerable effort on methods to optimize emergency response systems, a comparison of proposed methods is generally difficult as reported results are mostly based on artificial and proprietary test beds. In this paper, we present a benchmark simulation environment for dynamic ambulance redeployment based on real emergency data from the city of San Francisco. Our proposed simulation environment is highly scalable and is compatible with modern reinforcement learning frameworks. We provide a comparative study of several state-of-the-art methods for various metrics. Results indicate that even simple baseline algorithms can perform considerably well in close-to-realistic settings. The code of our simulator is openly available at https://github.com/niklasdbs/ambusim.