Application of diffusion based framelet transform to the MS-based proteomics data preprocessing

S. Amir, Haihui Wang, Fangtao Sun
{"title":"Application of diffusion based framelet transform to the MS-based proteomics data preprocessing","authors":"S. Amir, Haihui Wang, Fangtao Sun","doi":"10.1109/IBCAST.2013.6512140","DOIUrl":null,"url":null,"abstract":"Mass Spectrometry (MS) is one of the main detection tools for high-throughput proteomics. The preprocessing of mass spectra is fundamental for its successive examination like biomarker detection or protein identification. Peaks are extracted from a data set for biomarker identification. Biomarkers are useful for differentiating diseased and normal samples. Framelet transform has gradually become one of the important methodologies in the MS data preprocessing. The smoothing and baseline removal are important steps of the preprocessing of mass spectra. Nonlinear diffusion method has been effectively used in removing unimportant, minor variations while keeping vital features such as discontinuities. This paper reviews the application of diffusion based framelet transform in preprocessing stages for smoothing and peak detection of MS data.","PeriodicalId":276834,"journal":{"name":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2013.6512140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mass Spectrometry (MS) is one of the main detection tools for high-throughput proteomics. The preprocessing of mass spectra is fundamental for its successive examination like biomarker detection or protein identification. Peaks are extracted from a data set for biomarker identification. Biomarkers are useful for differentiating diseased and normal samples. Framelet transform has gradually become one of the important methodologies in the MS data preprocessing. The smoothing and baseline removal are important steps of the preprocessing of mass spectra. Nonlinear diffusion method has been effectively used in removing unimportant, minor variations while keeping vital features such as discontinuities. This paper reviews the application of diffusion based framelet transform in preprocessing stages for smoothing and peak detection of MS data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩散的框架变换在ms蛋白质组学数据预处理中的应用
质谱(MS)是高通量蛋白质组学的主要检测工具之一。质谱的预处理是生物标记物检测或蛋白质鉴定等质谱连续检测的基础。从生物标记物鉴定的数据集中提取峰。生物标志物对于区分病变和正常样本是有用的。框架变换已逐渐成为MS数据预处理的重要方法之一。平滑和基线去除是质谱预处理的重要步骤。非线性扩散法可以有效地去除不重要的微小变化,同时保留不连续性等重要特征。本文综述了基于扩散的框架变换在质谱数据平滑和峰检测的预处理阶段的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear independent increment process with linear standard deviation function for degradation analysis Sensor fault reconstruction for one-sided Lipschitz nonlinear systems Colloidal preparation of copper selenide and indium selenide nanoparticles by single source precursors approach Novel iris segmentation and recognition system for human identification A narrowband low noise amplifier for passive imaging systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1