{"title":"Pocket6: A 6DoF Controller Based On A Simple Smartphone Application","authors":"Teo Babic, Harald Reiterer, M. Haller","doi":"10.1145/3267782.3267785","DOIUrl":null,"url":null,"abstract":"We propose, implement and evaluate the use of a smartphone application for real-time six-degrees-of-freedom user input. We show that our app-based approach achieves high accuracy and goes head-to-head with expensive externally tracked controllers. The strength of our application is that it is simple to implement and is highly accessible --- requiring only an off-the-shelf smartphone, without any external trackers, markers, or wearables. Due to its inside-out tracking and its automatic remapping algorithm, users can comfortably perform subtle 3D inputs everywhere (world-scale), without any spatial or postural limitations. For example, they can interact while standing, sitting or while having their hands down by their sides. Finally, we also show its use in a wide range of applications for 2D and 3D object manipulation, thereby demonstrating its suitability for diverse real-world scenarios.","PeriodicalId":126671,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Spatial User Interaction","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Spatial User Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3267782.3267785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
We propose, implement and evaluate the use of a smartphone application for real-time six-degrees-of-freedom user input. We show that our app-based approach achieves high accuracy and goes head-to-head with expensive externally tracked controllers. The strength of our application is that it is simple to implement and is highly accessible --- requiring only an off-the-shelf smartphone, without any external trackers, markers, or wearables. Due to its inside-out tracking and its automatic remapping algorithm, users can comfortably perform subtle 3D inputs everywhere (world-scale), without any spatial or postural limitations. For example, they can interact while standing, sitting or while having their hands down by their sides. Finally, we also show its use in a wide range of applications for 2D and 3D object manipulation, thereby demonstrating its suitability for diverse real-world scenarios.