A Sketch Classifier Technique with Deep Learning Models Realized in an Embedded System

T. Tsai, Po-Ting Chi, Kuo-Hsing Cheng
{"title":"A Sketch Classifier Technique with Deep Learning Models Realized in an Embedded System","authors":"T. Tsai, Po-Ting Chi, Kuo-Hsing Cheng","doi":"10.1109/DDECS.2019.8724656","DOIUrl":null,"url":null,"abstract":"Since 2011, due to the growth in the amount of information, the innovation of learning algorithms and the improvement of computer technology make the application of artificial intelligence feasible in a wide range of fields. This paper presents a sketch classifier technique with deep learning models. We use the depth-wise convolution layer to lighten the deep neural network. The result shows the improvement in approximately 1/5 of computation. We use Google Quick Draw dataset to train and evaluate the network, which can have 98% accuracy in 10 categories and 85% accuracy in 100 categories. Finally, we realize it on STM32F469I Discovery development board for demonstration. The system can achieve real-time implementation of sketch classification.","PeriodicalId":197053,"journal":{"name":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2019.8724656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Since 2011, due to the growth in the amount of information, the innovation of learning algorithms and the improvement of computer technology make the application of artificial intelligence feasible in a wide range of fields. This paper presents a sketch classifier technique with deep learning models. We use the depth-wise convolution layer to lighten the deep neural network. The result shows the improvement in approximately 1/5 of computation. We use Google Quick Draw dataset to train and evaluate the network, which can have 98% accuracy in 10 categories and 85% accuracy in 100 categories. Finally, we realize it on STM32F469I Discovery development board for demonstration. The system can achieve real-time implementation of sketch classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习模型的草图分类器技术在嵌入式系统中的实现
2011年以来,由于信息量的增长,学习算法的创新和计算机技术的进步,使得人工智能在广泛领域的应用变得可行。本文提出了一种基于深度学习模型的草图分类器技术。我们使用深度卷积层来减轻深度神经网络。结果表明,改进后的计算量大约减少了1/5。我们使用谷歌Quick Draw数据集来训练和评估网络,该网络在10个类别中可以达到98%的准确率,在100个类别中可以达到85%的准确率。最后,我们在STM32F469I Discovery开发板上实现了该方法并进行了演示。该系统可以实现速写分类的实时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New categories of Safe Faults in a processor-based Embedded System Effective Screening of Automotive SoCs by Combining Burn-In and System Level Test Fault-Aware Performance Assessment Approach for Embedded Networks On the in-field test of the GPGPU scheduler memory Radiation- and Temperature-Induced Fault Modeling and Simulation in BiCMOS LSI’s Components using RAD-THERM TCAD Subsystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1