Numerical Analysis of a Multi-Species MHD Model for Plasma Layer Control of Re-Entry Vehicles

F. Dias, José C. Páscoa, C. Xisto
{"title":"Numerical Analysis of a Multi-Species MHD Model for Plasma Layer Control of Re-Entry Vehicles","authors":"F. Dias, José C. Páscoa, C. Xisto","doi":"10.1115/IMECE2018-87467","DOIUrl":null,"url":null,"abstract":"Several critical aspects control the successful reentry of vehicles on the earth’s atmosphere: continuous communication, GPS signal reception and real-time telemetry. However, there are some common issues that can interfere with the instruments operation, the most typical being the radio blackout, in which the plasma layer frequency modifies the electromagnetic waves in a way that makes communications to and from the spacecraft impossible. So far, there have been several proposed techniques to mitigate radio blackout, one of which is the usage of electromagnetic fields. Previous studies have proven the effectiveness of the usage of an electric and/or magnetic fields to manipulate plasma layers. Experiments on plasma layer manipulation during hypersonic flight regime are extremely costly. Therefore, there has been a continuous interest in the development of cheaper solutions, that can guarantee a reliable degree of accuracy, such as the development of complex multiphysics computational models. These models are becoming increasingly realistic and accurate, as more and more physical aspects can be considered, greatly increasing the accuracy and range of models. However, those models need to be validated with recourse to experimental data. In this paper we propose a model that uses a Low Magnetic Reynolds number, and accounts for five common neutral species: N2, O2, NO, N and O, along with several of their respective reactions: dissociation of molecular nitrogen and oxygen, and exchange. The model chemistry is then validated based on experimental data gathered by several authors.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several critical aspects control the successful reentry of vehicles on the earth’s atmosphere: continuous communication, GPS signal reception and real-time telemetry. However, there are some common issues that can interfere with the instruments operation, the most typical being the radio blackout, in which the plasma layer frequency modifies the electromagnetic waves in a way that makes communications to and from the spacecraft impossible. So far, there have been several proposed techniques to mitigate radio blackout, one of which is the usage of electromagnetic fields. Previous studies have proven the effectiveness of the usage of an electric and/or magnetic fields to manipulate plasma layers. Experiments on plasma layer manipulation during hypersonic flight regime are extremely costly. Therefore, there has been a continuous interest in the development of cheaper solutions, that can guarantee a reliable degree of accuracy, such as the development of complex multiphysics computational models. These models are becoming increasingly realistic and accurate, as more and more physical aspects can be considered, greatly increasing the accuracy and range of models. However, those models need to be validated with recourse to experimental data. In this paper we propose a model that uses a Low Magnetic Reynolds number, and accounts for five common neutral species: N2, O2, NO, N and O, along with several of their respective reactions: dissociation of molecular nitrogen and oxygen, and exchange. The model chemistry is then validated based on experimental data gathered by several authors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再入飞行器等离子体层控制的多物种MHD模型数值分析
几个关键方面控制着飞行器成功重返地球大气层:连续通信、GPS信号接收和实时遥测。然而,有一些常见的问题会干扰仪器的操作,最典型的是无线电中断,在这种情况下,等离子体层的频率改变了电磁波,使与航天器的通信变得不可能。到目前为止,已经提出了几种缓解无线电停电的技术,其中之一是使用电磁场。以前的研究已经证明了使用电场和/或磁场来操纵等离子体层的有效性。高超声速飞行过程中等离子体层操纵的实验非常昂贵。因此,人们一直对开发更便宜的解决方案感兴趣,这些解决方案可以保证可靠的准确性,例如开发复杂的多物理场计算模型。这些模型变得越来越逼真和准确,因为越来越多的物理方面可以考虑,大大提高了模型的准确性和范围。然而,这些模型需要借助实验数据进行验证。在本文中,我们提出了一个使用低磁雷诺数的模型,并考虑了五种常见的中性物质:N2, O2, NO, N和O,以及它们各自的几种反应:分子氮和氧的解离和交换。然后根据几位作者收集的实验数据对模型化学进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Best Structural Theories for Free Vibrations of Sandwich Composites via Machine Learning Effect of Cryogenic Temperature Rolling on High Speed Impact Behavior of AA 6082 Thin Targets Neural Network Inverse Based Omnidirectional Rotation Decoupling Control to the Electrodynamic Reaction Sphere Structural Dynamic Testing Results for Air-Independent Proton Exchange Membrane (PEM) Fuel Cell Technologies for Space Applications Effect of Shear Overloads on Crack Propagation in Al-7075 Under In-Plane Biaxial Fatigue Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1