Prediction by back-propagation neural network for lossless image compression

G. Hong, G. Hall, T. Terrell
{"title":"Prediction by back-propagation neural network for lossless image compression","authors":"G. Hong, G. Hall, T. Terrell","doi":"10.1109/ICSIGP.1996.566266","DOIUrl":null,"url":null,"abstract":"This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反向传播神经网络的无损图像压缩预测
本文描述了一种基于反向传播神经网络的无损图像压缩预测过程。预测器是通过使用实际图像像素的反向传播神经网络的监督训练来设计的,即使用典型的像素值序列。该方法的意义在于利用了图像中像素值之间存在的高阶统计量和非线性函数。从均方误差和一阶熵的角度给出了预测误差图像的结果,并对算法的性能进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive vector quantization based on neural network Fast convergence algorithm for wavelet neural network used for signal or function approximation The study of ultrasonic imaging system for austenitic welds testing Identification of pelagic eggs by image analysis Using ANN for the recognition of vibration signals of off-shore equipment's failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1