Fault Localization of Temperature-Dependent Digital Circuit Functional Failures Utilizing the Scan-based Bench Testing and the Dynamic Analysis by Laser Simulation (DALS)
{"title":"Fault Localization of Temperature-Dependent Digital Circuit Functional Failures Utilizing the Scan-based Bench Testing and the Dynamic Analysis by Laser Simulation (DALS)","authors":"Edward Bryan T. Pineda","doi":"10.1109/IPFA55383.2022.9915743","DOIUrl":null,"url":null,"abstract":"Soft defect failures are challenging, especially when dealing with the bias condition at the specific failing temperature. Fault localization of temperature-dependent digital circuit functional failures utilizing the scan-based bench Testing and the Dynamic Analysis by Laser Simulation (DALS) will employ a failure analysis flow based on the dynamic power dissipation theory. This study presents an alternative approach to solving temperature-dependent failures using the power dissipation equation by varying variables like voltage supply level and frequency or the speed instead of varying the temperature. The design principles of scan-based testing, which the design engineers utilize during the initial manufacturing phase, were used to solve failures on the digital block. During fault localization, the laser scanning microscope provides a temperature change proportional to the temperature dependency of the failing device. The objective is to bring the device to the failing state whenever the laser scans across the temperature-sensitive area of the die. The study showcases failure analysis cases that showed a significant improvement in the level of the analysis process, a drastic cycle time reduction in the analysis, and an almost 100% success rate in identifying the root cause compared with the conventional analysis.","PeriodicalId":378702,"journal":{"name":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA55383.2022.9915743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soft defect failures are challenging, especially when dealing with the bias condition at the specific failing temperature. Fault localization of temperature-dependent digital circuit functional failures utilizing the scan-based bench Testing and the Dynamic Analysis by Laser Simulation (DALS) will employ a failure analysis flow based on the dynamic power dissipation theory. This study presents an alternative approach to solving temperature-dependent failures using the power dissipation equation by varying variables like voltage supply level and frequency or the speed instead of varying the temperature. The design principles of scan-based testing, which the design engineers utilize during the initial manufacturing phase, were used to solve failures on the digital block. During fault localization, the laser scanning microscope provides a temperature change proportional to the temperature dependency of the failing device. The objective is to bring the device to the failing state whenever the laser scans across the temperature-sensitive area of the die. The study showcases failure analysis cases that showed a significant improvement in the level of the analysis process, a drastic cycle time reduction in the analysis, and an almost 100% success rate in identifying the root cause compared with the conventional analysis.