Blindly Predict Image and Video Quality in the Wild

Jiapeng Tang, Yi Fang, Yu Dong, Rong Xie, Xiao Gu, Guangtao Zhai, Li Song
{"title":"Blindly Predict Image and Video Quality in the Wild","authors":"Jiapeng Tang, Yi Fang, Yu Dong, Rong Xie, Xiao Gu, Guangtao Zhai, Li Song","doi":"10.1145/3469877.3490588","DOIUrl":null,"url":null,"abstract":"Emerging interests have been brought to blind quality assessment for images/videos captured in the wild, known as in-the-wild I/VQA. Prior deep learning based approaches have achieved considerable progress in I/VQA, but are intrinsically troubled with two issues. Firstly, most existing methods fine-tune the image-classification-oriented pre-trained models for the absence of large-scale I/VQA datasets. However, the task misalignment between I/VQA and image classification leads to degraded generalization performance. Secondly, existing VQA methods directly conduct temporal pooling on the predicted frame-wise scores, resulting in ambiguous inter-frame relation modeling. In this work, we propose a two-stage architecture to separately predict image and video quality in the wild. In the first stage, we resort to supervised contrastive learning to derive quality-aware representations that facilitate the prediction of image quality. Specifically, we propose a novel quality-aware contrastive loss to pull together samples of similar quality and push away quality-different ones in embedding space. In the second stage, we develop a Relation-Guided Temporal Attention (RTA) module for video quality prediction, which captures global inter-frame dependencies in embedding space to learn frame-wise attention weights for frame quality aggregation. Extensive experiments demonstrate that our approach performs favorably against state-of-the-art methods on both authentically distorted image benchmarks and video benchmarks.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging interests have been brought to blind quality assessment for images/videos captured in the wild, known as in-the-wild I/VQA. Prior deep learning based approaches have achieved considerable progress in I/VQA, but are intrinsically troubled with two issues. Firstly, most existing methods fine-tune the image-classification-oriented pre-trained models for the absence of large-scale I/VQA datasets. However, the task misalignment between I/VQA and image classification leads to degraded generalization performance. Secondly, existing VQA methods directly conduct temporal pooling on the predicted frame-wise scores, resulting in ambiguous inter-frame relation modeling. In this work, we propose a two-stage architecture to separately predict image and video quality in the wild. In the first stage, we resort to supervised contrastive learning to derive quality-aware representations that facilitate the prediction of image quality. Specifically, we propose a novel quality-aware contrastive loss to pull together samples of similar quality and push away quality-different ones in embedding space. In the second stage, we develop a Relation-Guided Temporal Attention (RTA) module for video quality prediction, which captures global inter-frame dependencies in embedding space to learn frame-wise attention weights for frame quality aggregation. Extensive experiments demonstrate that our approach performs favorably against state-of-the-art methods on both authentically distorted image benchmarks and video benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在野外盲目预测图像和视频质量
对野外拍摄的图像/视频进行盲质量评估,被称为野外I/VQA。先前基于深度学习的方法在I/VQA方面取得了相当大的进展,但本质上存在两个问题。首先,针对缺乏大规模I/VQA数据集的情况,大多数现有方法对面向图像分类的预训练模型进行了微调。然而,I/VQA与图像分类之间的任务错位导致了泛化性能的下降。其次,现有的VQA方法直接对预测的逐帧分数进行时间池化,导致帧间关系建模不明确。在这项工作中,我们提出了一个两阶段的架构来分别预测图像和视频质量。在第一阶段,我们采用监督对比学习来获得有助于预测图像质量的质量感知表示。具体来说,我们提出了一种新的质量感知对比损失,将质量相似的样本聚集在一起,将质量不同的样本推离嵌入空间。在第二阶段,我们开发了一个用于视频质量预测的关系引导时间注意力(RTA)模块,该模块捕获嵌入空间中的全局帧间依赖关系,以学习用于帧质量聚合的帧明智的注意力权重。大量的实验表明,我们的方法在真实扭曲的图像基准和视频基准上都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1