Lei Su, W. Qiao, Hongmin Li, Chengye Jiang, Guichen Yang, Falin Liu
{"title":"Digital Predistortion of RF Power Amplifiers Considering the Group Delay Distortion","authors":"Lei Su, W. Qiao, Hongmin Li, Chengye Jiang, Guichen Yang, Falin Liu","doi":"10.1109/IWS55252.2022.9978136","DOIUrl":null,"url":null,"abstract":"In this paper, a novel adaptive time alignment method for digital predistortion (DPD) is proposed to deal with the linearization of power amplifiers (PAs) when severer group delay distortion (GDD) exists in the feedback path. Group delay mismatch significantly influences the precision during the extraction of the DPD model's coefficients. Based on the mathematical analysis of group delay, the proposed method can weaken the effects of GDD. Experiments' results confirm that the DPD model with the proposed method has better performance than the DPD model only with the traditional time alignment method.","PeriodicalId":126964,"journal":{"name":"2022 IEEE MTT-S International Wireless Symposium (IWS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS55252.2022.9978136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel adaptive time alignment method for digital predistortion (DPD) is proposed to deal with the linearization of power amplifiers (PAs) when severer group delay distortion (GDD) exists in the feedback path. Group delay mismatch significantly influences the precision during the extraction of the DPD model's coefficients. Based on the mathematical analysis of group delay, the proposed method can weaken the effects of GDD. Experiments' results confirm that the DPD model with the proposed method has better performance than the DPD model only with the traditional time alignment method.