Evolution of mesh refinement rules for impact dynamics

D. Howard, S. C. Roberts
{"title":"Evolution of mesh refinement rules for impact dynamics","authors":"D. Howard, S. C. Roberts","doi":"10.1109/CEC.2000.870801","DOIUrl":null,"url":null,"abstract":"Genetic programming (GP) was used in an experiment to investigate the possibility of learning rules that trigger adaptive mesh refinement. GP detected mesh cells that required refinement by evolving a formula involving cell quantities such as material densities. Various cell variable combinations were investigated in order to identify the optimal ones for indicating mesh refinement. The problem studied was the high speed impact of a spherical ball on a metal plate.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic programming (GP) was used in an experiment to investigate the possibility of learning rules that trigger adaptive mesh refinement. GP detected mesh cells that required refinement by evolving a formula involving cell quantities such as material densities. Various cell variable combinations were investigated in order to identify the optimal ones for indicating mesh refinement. The problem studied was the high speed impact of a spherical ball on a metal plate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碰撞动力学网格细化规则的演化
在一个实验中使用遗传规划(GP)来研究触发自适应网格细化的学习规则的可能性。GP检测需要细化的网格细胞,通过进化一个涉及细胞数量(如材料密度)的公式。研究了不同的单元格变量组合,以确定网格细化的最佳组合。所研究的问题是一个球形球对金属板的高速撞击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1