Temperature profiles along bonding wires, revealed by the bond calculator, a new thermo-electrical simulation tool

C. C. Jung, C. Silber, J. Scheible
{"title":"Temperature profiles along bonding wires, revealed by the bond calculator, a new thermo-electrical simulation tool","authors":"C. C. Jung, C. Silber, J. Scheible","doi":"10.1109/EUROSIME.2015.7103148","DOIUrl":null,"url":null,"abstract":"When a bonding wire becomes too hot, it fuses and fails. The ohmic heat that is generated in the wire can be partially dissipated to a mold package. For this cooling effect the thermal contact between wire and package is an important parameter. Because this parameter can degrade over lifetime, the fusing of a bonding wire can also occur as a long-term effect. Another important factor is the thermal power generated in the vicinity of the bond pads. Nowadays, the reliability of bond wires relies on robust dimensioning based on estimations. Smaller package sizes increase the need for better predictive methods.The Bond Calculator, a new thermo-electrical simulation tool, is able to predict the temperature profiles along bond wires of arbitrary dimensions in dependence on the applied arbitrary transient current profile, the mold surrounding the wire, and the thermal contact between wire and mold. In this paper we closely investigated the spatial temperature profiles along different bond wires in air in order to make a first step towards the experimental verification of the simulation model. We are using infrared microscopy in order to measure the thermal radiation generated along the bond wire. This is easier to perform quantitatively in air than in the mold package, because of the non-negligible absorbance of the mold material in the infrared wavelength region.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When a bonding wire becomes too hot, it fuses and fails. The ohmic heat that is generated in the wire can be partially dissipated to a mold package. For this cooling effect the thermal contact between wire and package is an important parameter. Because this parameter can degrade over lifetime, the fusing of a bonding wire can also occur as a long-term effect. Another important factor is the thermal power generated in the vicinity of the bond pads. Nowadays, the reliability of bond wires relies on robust dimensioning based on estimations. Smaller package sizes increase the need for better predictive methods.The Bond Calculator, a new thermo-electrical simulation tool, is able to predict the temperature profiles along bond wires of arbitrary dimensions in dependence on the applied arbitrary transient current profile, the mold surrounding the wire, and the thermal contact between wire and mold. In this paper we closely investigated the spatial temperature profiles along different bond wires in air in order to make a first step towards the experimental verification of the simulation model. We are using infrared microscopy in order to measure the thermal radiation generated along the bond wire. This is easier to perform quantitatively in air than in the mold package, because of the non-negligible absorbance of the mold material in the infrared wavelength region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新型热电模拟工具键合计算器揭示了沿键合导线的温度分布
当连接线太热时,就会熔断而失效。在导线中产生的欧姆热可以部分散失到模具封装中。对于这种冷却效果,电线和封装之间的热接触是一个重要的参数。由于该参数会随着使用寿命的延长而降低,因此焊线的熔断也会产生长期影响。另一个重要因素是在焊盘附近产生的热功率。目前,键合线的可靠性依赖于基于估计的稳健尺寸。更小的包装尺寸增加了对更好的预测方法的需求。Bond Calculator是一种新型的热电模拟工具,它能够根据施加的任意瞬态电流曲线、金属丝周围的模具以及金属丝与模具之间的热接触来预测任意尺寸金属丝的温度分布。在本文中,我们仔细研究了空气中不同键合线的空间温度分布,以便对模拟模型进行实验验证。我们正在使用红外显微镜来测量沿键合线产生的热辐射。这在空气中比在模具包装中更容易进行定量,因为模具材料在红外波长区域的吸光度不可忽略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient simulation of thermo-mechanical stress in the on-chip metallization of power semiconductors Simulation driven design of novel integrated circuits - Part 1: Selection of the materials based on the Virtual DoE Applications of computational mechanics in stretchable electronics Prediction of package delamination based on μMMT and BST experiments Simulation of a flip chip bonding technique using reactive foils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1