Neural Network Based Sliding Mode Lateral Control For Autonomous Vehicle

Lhoussain El Hajjami, E. Mellouli, M. Berrada
{"title":"Neural Network Based Sliding Mode Lateral Control For Autonomous Vehicle","authors":"Lhoussain El Hajjami, E. Mellouli, M. Berrada","doi":"10.1109/IRASET48871.2020.9092055","DOIUrl":null,"url":null,"abstract":"Nowadays, autonomous driving represents a major challenge for automobile manufacturers in order to reach the latest levels of autonomy. Any autonomous vehicle development project focuses on three fundamental phases; environmental perception, trajectory planning and path pursuit which including control and command as an integral part. This paper presents a modified Sliding Mode Controller based on the Radial Basic Function Neural Networks (SMC_RBNN) able to control the lateral dynamics of the vehicle. For a sinusoidal reference path, the proposed control strategy, SMC_RBNN, showed better results than those obtained with a conventional Sliding Mode Controller (SMC), in terms of lateral tracking error.","PeriodicalId":271840,"journal":{"name":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET48871.2020.9092055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Nowadays, autonomous driving represents a major challenge for automobile manufacturers in order to reach the latest levels of autonomy. Any autonomous vehicle development project focuses on three fundamental phases; environmental perception, trajectory planning and path pursuit which including control and command as an integral part. This paper presents a modified Sliding Mode Controller based on the Radial Basic Function Neural Networks (SMC_RBNN) able to control the lateral dynamics of the vehicle. For a sinusoidal reference path, the proposed control strategy, SMC_RBNN, showed better results than those obtained with a conventional Sliding Mode Controller (SMC), in terms of lateral tracking error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的自动驾驶汽车滑模横向控制
如今,为了达到最新的自动驾驶水平,自动驾驶对汽车制造商来说是一个重大挑战。任何自动驾驶汽车开发项目都关注三个基本阶段;环境感知、轨迹规划和路径追求,其中包括控制和指挥。提出了一种基于径向基函数神经网络(SMC_RBNN)的改进型滑模控制器,用于控制车辆的横向动力学。对于正弦参考路径,SMC_RBNN控制策略在横向跟踪误差方面优于传统滑模控制器(SMC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conception of a Training System for Emergency Situation Managers Optimization by the Response Surface Methodology of Color Optimal Control of Wind Energy Generation System Synthesis and Characterisation of Anhydrous Proton Conducting Membranes Based on Sulfonated Poly(vinyl alcohol) and Silicotungstic Acid with or without Silica for Fuel Cell Applications Towards a behavioral network intrusion detection system based on the SVM model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1