A City Traffic Dashboard using Social Network Data

Apurva Pathak, Bidyut Kr. Patra, Arnab Chakraborty, Abhishek Agarwal
{"title":"A City Traffic Dashboard using Social Network Data","authors":"Apurva Pathak, Bidyut Kr. Patra, Arnab Chakraborty, Abhishek Agarwal","doi":"10.1145/2778865.2778873","DOIUrl":null,"url":null,"abstract":"With the growing urbanization and globalization, long commute and traffic problems have become the everyday nightmare of an Indian metro city dweller. The non-existence of a singular dashboard, which can provide holistic view of the city traffic, has aggravated this problem manifold for the traffic authorities and its citizens. This paper describes the methodology we employed for CoDS 2015 Data Challenge to solve this problem. We show how data from social network can derive useful information about the road and traffic issues in a city. We propose to design a dashboard for obtaining real-time view of the traffic data scattered across various user status updates, tweets and comments on social networks using state-of-the-art machine learning algorithms. We present empirical results and discuss various methods for extracting useful information from the social feeds. Proposed dashboard can provide a straight actionable information to the users and traffic authorities for handling traffic issues in efficient manner.","PeriodicalId":116839,"journal":{"name":"Proceedings of the 2nd IKDD Conference on Data Sciences","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IKDD Conference on Data Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2778865.2778873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

With the growing urbanization and globalization, long commute and traffic problems have become the everyday nightmare of an Indian metro city dweller. The non-existence of a singular dashboard, which can provide holistic view of the city traffic, has aggravated this problem manifold for the traffic authorities and its citizens. This paper describes the methodology we employed for CoDS 2015 Data Challenge to solve this problem. We show how data from social network can derive useful information about the road and traffic issues in a city. We propose to design a dashboard for obtaining real-time view of the traffic data scattered across various user status updates, tweets and comments on social networks using state-of-the-art machine learning algorithms. We present empirical results and discuss various methods for extracting useful information from the social feeds. Proposed dashboard can provide a straight actionable information to the users and traffic authorities for handling traffic issues in efficient manner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用社交网络数据的城市交通仪表板
随着城市化和全球化的发展,长时间的通勤和交通问题已经成为印度城市居民每天的噩梦。没有一个单一的仪表盘,可以提供城市交通的整体视图,使交通部门和市民的这个问题更加严重。本文描述了我们在CoDS 2015数据挑战赛中采用的方法来解决这个问题。我们展示了来自社交网络的数据如何获得有关城市道路和交通问题的有用信息。我们建议设计一个仪表板,使用最先进的机器学习算法,获取分散在各种用户状态更新、推文和社交网络评论中的交通数据的实时视图。我们提出了实证结果,并讨论了从社交feed中提取有用信息的各种方法。建议的仪表盘可以为用户和交通部门提供直接可操作的信息,以便有效地处理交通问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resilient Cities and Urban Analytics: The Role of Big Data and High Performance Pervasive Computing TrafficKarma: Estimating Effective Traffic Indicators using Public Data TraffTrend: Real time traffic updates and traffic trends using social media analytics MapReduce Algorithms Broad Data: Challenges on the emerging Web of data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1