{"title":"Applying Machine Learning Methods for Credit Card Payment Default Prediction With Cost Savings","authors":"Siddharth Vinod Jain, M. Jayabalan","doi":"10.4018/978-1-7998-8455-2.ch011","DOIUrl":null,"url":null,"abstract":"The credit card has been one of the most successful and prevalent financial services being widely used across the globe. However, with the upsurge in credit card holders, banks are facing a challenge from equally increasing payment default cases causing substantial financial damage. This necessitates the importance of sound and effective credit risk management in the banking and financial services industry. Machine learning models are being employed by the industry at a large scale to effectively manage this credit risk. This chapter presents the application of the various machine learning methods like time series models and deep learning models experimented in predicting the credit card payment defaults along with identification of the significant features and the most effective evaluation criteria. This chapter also discusses the challenges and future considerations in predicting credit card payment defaults. The importance of factoring in a cost function to associate with misclassification by the models is also given.","PeriodicalId":250689,"journal":{"name":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8455-2.ch011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The credit card has been one of the most successful and prevalent financial services being widely used across the globe. However, with the upsurge in credit card holders, banks are facing a challenge from equally increasing payment default cases causing substantial financial damage. This necessitates the importance of sound and effective credit risk management in the banking and financial services industry. Machine learning models are being employed by the industry at a large scale to effectively manage this credit risk. This chapter presents the application of the various machine learning methods like time series models and deep learning models experimented in predicting the credit card payment defaults along with identification of the significant features and the most effective evaluation criteria. This chapter also discusses the challenges and future considerations in predicting credit card payment defaults. The importance of factoring in a cost function to associate with misclassification by the models is also given.