Low-power gated clock tree optimization for three-dimensional integrated circuits

Yu-Chuan Chen, Chih-Cheng Hsu, Mark Po-Hung Lin
{"title":"Low-power gated clock tree optimization for three-dimensional integrated circuits","authors":"Yu-Chuan Chen, Chih-Cheng Hsu, Mark Po-Hung Lin","doi":"10.1109/VLSI-DAT.2015.7114530","DOIUrl":null,"url":null,"abstract":"Applying clock gating in three dimensional integrated circuits (3D ICs) is essential for reducing power consumption and improving circuit reliability. However, the previous works only present algorithms for 3D clock tree synthesis. None of them address gated clock tree in 3D ICs for dynamic power reduction. In this paper, we propose the first problem formulation in the literature for 3D gated clock network optimization. We consider both flip-flop switching activities and the timing constraint of enable signal paths at clock gating cells when constructing topological gated clock trees. Based on the topological gated clock trees, a zero-skew 3D clock routing tree is then generated. Experimental results show that, compared with conventional 3D clock tree synthesis, the proposed 3D gated clock tree synthesis can achieve much less power consumption with similar number of TSVs and clock tree wirelength.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Applying clock gating in three dimensional integrated circuits (3D ICs) is essential for reducing power consumption and improving circuit reliability. However, the previous works only present algorithms for 3D clock tree synthesis. None of them address gated clock tree in 3D ICs for dynamic power reduction. In this paper, we propose the first problem formulation in the literature for 3D gated clock network optimization. We consider both flip-flop switching activities and the timing constraint of enable signal paths at clock gating cells when constructing topological gated clock trees. Based on the topological gated clock trees, a zero-skew 3D clock routing tree is then generated. Experimental results show that, compared with conventional 3D clock tree synthesis, the proposed 3D gated clock tree synthesis can achieve much less power consumption with similar number of TSVs and clock tree wirelength.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维集成电路的低功耗门控时钟树优化
在三维集成电路(3D ic)中应用时钟门控对于降低功耗和提高电路可靠性至关重要。然而,以前的工作只提出了三维时钟树合成的算法。他们都没有解决门控时钟树在3D ic动态降低功耗。在本文中,我们提出了文献中第一个三维门控时钟网络优化问题的表述。在构造拓扑门控时钟树时,我们考虑了触发器开关活动和时钟门控单元使能信号路径的时序约束。在拓扑门控时钟树的基础上,生成零偏三维时钟路由树。实验结果表明,与传统的三维时钟树合成方法相比,本文提出的三维门控时钟树合成方法在具有相似的tsv数量和时钟树长度的情况下,功耗更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 127 fJ/conv. continuous-time delta-sigma modulator with a DWA-embedded two-step time-domain quantizer Biomedical devices and instruments for point-of-care diagnosis Cost challenges on the way to the Internet of Things An in-pixel equalizer with kTC noise cancellation and FPN reduction for time-of-flight CMOS image sensor A dual-edge sampling CES delay-locked loop based clock and data recovery circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1