Gait recognition by two-stage principal component analysis

Sandhitsu R. Das, Robert C. Wilson, M. Lazarewicz, L. Finkel
{"title":"Gait recognition by two-stage principal component analysis","authors":"Sandhitsu R. Das, Robert C. Wilson, M. Lazarewicz, L. Finkel","doi":"10.1109/FGR.2006.56","DOIUrl":null,"url":null,"abstract":"We describe a methodology for classification of gait (walk, run, jog, etc.) and recognition of individuals based on gait using two successive stages of principal component analysis (PCA) on kinematic data. In psychophysical studies, we have found that observers are sensitive to specific \"motion features\" that characterize human gait. These spatiotemporal motion features closely correspond to the first few principal components (PC) of the kinematic data. The first few PCs provide a representation of an individual gait as trajectory along a low-dimensional manifold in PC space. A second stage of PCA captures variability in the shape of this manifold across individuals or gaits. This simple eigenspace based analysis is capable of accurate classification across subjects","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We describe a methodology for classification of gait (walk, run, jog, etc.) and recognition of individuals based on gait using two successive stages of principal component analysis (PCA) on kinematic data. In psychophysical studies, we have found that observers are sensitive to specific "motion features" that characterize human gait. These spatiotemporal motion features closely correspond to the first few principal components (PC) of the kinematic data. The first few PCs provide a representation of an individual gait as trajectory along a low-dimensional manifold in PC space. A second stage of PCA captures variability in the shape of this manifold across individuals or gaits. This simple eigenspace based analysis is capable of accurate classification across subjects
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于两阶段主成分分析的步态识别
我们描述了一种步态分类(步行,跑步,慢跑等)和基于步态的个体识别的方法,使用运动学数据的两个连续阶段的主成分分析(PCA)。在心理物理学研究中,我们发现观察者对人类步态的特定“运动特征”很敏感。这些时空运动特征与运动学数据的前几个主成分(PC)密切对应。最初的几个PC将个人步态表示为PC空间中沿低维流形的轨迹。PCA的第二阶段捕获这种流形在个体或步态上的变异性。这种简单的基于特征空间的分析能够跨主题进行准确分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1