{"title":"Machine Learning, Compositional and Fractal Models to Diagnose Soil Quality and Plant Nutrition","authors":"L. Parent, W. Natale, G. Brunetto","doi":"10.5772/INTECHOPEN.98896","DOIUrl":null,"url":null,"abstract":"Soils, nutrients and other factors support human food production. The loss of high-quality soils and readily minable nutrient sources pose a great challenge to present-day agriculture. A comprehensive scheme is required to make wise decisions on system’s sustainability and minimize the risk of crop failure. Soil quality provides useful indicators of its chemical, physical and biological status. Tools of precision agriculture and high-throughput technologies allow acquiring numerous soil and plant data at affordable costs in the perspective of customizing recommendations. Large and diversified datasets must be acquired uniformly among stakeholders to diagnose soil quality and plant nutrition at local scale, compare side-by-side defective and successful cases, implement trustful practices and reach high resource-use efficiency. Machine learning methods can combine numerous edaphic, managerial and climatic yield-impacting factors to conduct nutrient diagnosis and manage nutrients at local scale where factors interact. Compositional data analysis are tools to run numerical analyses on interacting components. Fractal models can describe aggregate stability tied to soil conservation practices and return site-specific indicators for decomposition rates of organic matter in relation to soil tillage and management. This chapter reports on machine learning, compositional and fractal models to support wise decisions on crop fertilization and soil conservation practices.","PeriodicalId":141726,"journal":{"name":"Soil Science - Emerging Technologies, Global Perspectives and Applications [Working Title]","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science - Emerging Technologies, Global Perspectives and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.98896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Soils, nutrients and other factors support human food production. The loss of high-quality soils and readily minable nutrient sources pose a great challenge to present-day agriculture. A comprehensive scheme is required to make wise decisions on system’s sustainability and minimize the risk of crop failure. Soil quality provides useful indicators of its chemical, physical and biological status. Tools of precision agriculture and high-throughput technologies allow acquiring numerous soil and plant data at affordable costs in the perspective of customizing recommendations. Large and diversified datasets must be acquired uniformly among stakeholders to diagnose soil quality and plant nutrition at local scale, compare side-by-side defective and successful cases, implement trustful practices and reach high resource-use efficiency. Machine learning methods can combine numerous edaphic, managerial and climatic yield-impacting factors to conduct nutrient diagnosis and manage nutrients at local scale where factors interact. Compositional data analysis are tools to run numerical analyses on interacting components. Fractal models can describe aggregate stability tied to soil conservation practices and return site-specific indicators for decomposition rates of organic matter in relation to soil tillage and management. This chapter reports on machine learning, compositional and fractal models to support wise decisions on crop fertilization and soil conservation practices.