Backward/forward probabilistic network state estimation tool and its real world validation

Martin Strelec, P. Janeček, D. Georgiev, Andrea Zápotocká, E. Janecek
{"title":"Backward/forward probabilistic network state estimation tool and its real world validation","authors":"Martin Strelec, P. Janeček, D. Georgiev, Andrea Zápotocká, E. Janecek","doi":"10.1109/RTUCON.2015.7343142","DOIUrl":null,"url":null,"abstract":"Increasing penetration of renewable energy sources into conventional power networks causes increase of the uncertainty level which reveals new research and technological challenges. High fidelity network state estimation in environment with significant share of intermittent energy sources is required for planning and operation activities performed by system operators. Probabilistic load flow methods stand for promising estimation techniques which can be applicable for environment with strong presence of uncertainty. Paper describes an estimation tool based on probabilistic backward/forward method. Special emphasis is given to the description of particular components of the estimation tool. Reliability and robustness of the tool is demonstrated on the results from real world validation.","PeriodicalId":389419,"journal":{"name":"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2015.7343142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Increasing penetration of renewable energy sources into conventional power networks causes increase of the uncertainty level which reveals new research and technological challenges. High fidelity network state estimation in environment with significant share of intermittent energy sources is required for planning and operation activities performed by system operators. Probabilistic load flow methods stand for promising estimation techniques which can be applicable for environment with strong presence of uncertainty. Paper describes an estimation tool based on probabilistic backward/forward method. Special emphasis is given to the description of particular components of the estimation tool. Reliability and robustness of the tool is demonstrated on the results from real world validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后向/前向概率网络状态估计工具及其现实世界验证
可再生能源越来越多地渗透到传统电网中,导致不确定性水平的增加,这揭示了新的研究和技术挑战。在间歇性能源占比较大的环境下,系统操作员需要进行高保真的网络状态估计,以进行规划和运行活动。概率潮流法是一种很有前途的估计技术,适用于不确定性很强的环境。本文介绍了一种基于概率后向/前向方法的估计工具。特别强调的是对评估工具的特定组件的描述。实际验证结果证明了该工具的可靠性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control actions based nonlinear objective function for robust calculations of electrical power system security Selection of standard dynamic model for control systems of mechatronic modules Implementation of fast and accurate modeling method of electric drives University impact on power supply economy, reliability and sustainability enhancement decreasing climate changes System on Chip in modern motion control systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1