Pineapple Waste-Derived Carbon as a Metal Free Catalyst in Zinc-Air Battery

Celfi Gustine Adios, Faiq Haidar Hamid, Adiska Nur Safira, Y. Irmawati, A. Sumboja
{"title":"Pineapple Waste-Derived Carbon as a Metal Free Catalyst in Zinc-Air Battery","authors":"Celfi Gustine Adios, Faiq Haidar Hamid, Adiska Nur Safira, Y. Irmawati, A. Sumboja","doi":"10.1109/ICEVT55516.2022.9924880","DOIUrl":null,"url":null,"abstract":"Catalysts made from biomass are promising oxygen catalysts for zinc-air batteries (ZABs) because of their inexpensive cost and long-term availability. In this study, we utilize pineapple waste (crown and core) to produce a metal-free oxygen reduction catalyst through a facile potassium hydroxide activation and pyrolysis treatment at 800 °C. Both produced catalysts have a porous structure. The C-Pineapple Core catalyst, on the other hand, has a greater double-layer capacitance (Cdl) of 1.75 mF, suggesting that there are more active sites present than on the C-Pineapple Crown catalyst (1.3 mF). The electrochemical performance test in 0.1 M KOH electrolyte demonstrates that the C-Pineapple Core and C-Pineapple Crown catalysts have a good oxygen reduction reaction (ORR) activity, with onset potentials vs. RHE of 0.95 V and 0.91 V, respectively. An air cathode ZAB constructed with the C-Pineapple Core catalyst could deliver a power density of 85.75 mW cm-2 with an outstanding cycling behavior over 504 cycles (168 h). This research turns agricultural waste into a metal-free oxygen catalyst with good stability.","PeriodicalId":115017,"journal":{"name":"2022 7th International Conference on Electric Vehicular Technology (ICEVT)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Electric Vehicular Technology (ICEVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVT55516.2022.9924880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Catalysts made from biomass are promising oxygen catalysts for zinc-air batteries (ZABs) because of their inexpensive cost and long-term availability. In this study, we utilize pineapple waste (crown and core) to produce a metal-free oxygen reduction catalyst through a facile potassium hydroxide activation and pyrolysis treatment at 800 °C. Both produced catalysts have a porous structure. The C-Pineapple Core catalyst, on the other hand, has a greater double-layer capacitance (Cdl) of 1.75 mF, suggesting that there are more active sites present than on the C-Pineapple Crown catalyst (1.3 mF). The electrochemical performance test in 0.1 M KOH electrolyte demonstrates that the C-Pineapple Core and C-Pineapple Crown catalysts have a good oxygen reduction reaction (ORR) activity, with onset potentials vs. RHE of 0.95 V and 0.91 V, respectively. An air cathode ZAB constructed with the C-Pineapple Core catalyst could deliver a power density of 85.75 mW cm-2 with an outstanding cycling behavior over 504 cycles (168 h). This research turns agricultural waste into a metal-free oxygen catalyst with good stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
菠萝废弃物碳作为锌-空气电池无金属催化剂的研究
生物质催化剂是锌-空气电池(ZABs)的氧催化剂,具有成本低廉和长期可用性等优点。在本研究中,我们利用菠萝废料(菠萝冠和菠萝芯),通过简便的氢氧化钾活化和热解处理,在800℃下制备了一种无金属氧还原催化剂。两种催化剂都具有多孔结构。另一方面,c -菠萝核心催化剂的双层电容(Cdl)为1.75 mF,表明其活性位点比c -菠萝冠催化剂(1.3 mF)更多。在0.1 M KOH电解液中的电化学性能测试表明,c -菠萝核和c -菠萝冠催化剂具有良好的氧还原反应(ORR)活性,相对于RHE的起始电位分别为0.95 V和0.91 V。采用c -菠萝核心催化剂构建的空气阴极ZAB可提供85.75 mW cm-2的功率密度,并具有504次循环(168 h)的优异循环性能。本研究将农业废弃物转化为具有良好稳定性的无金属氧催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Battery Thermal Management System Based on Animal Fat as Phase Change Material and Heat Pipe for Electric Vehicles Application Behavior of Double and Single Square Steel Tube Alloy Composite Subjected to Bending Electrolyte-dependent Specific Capacitance and Charge Transfer Properties of Exfoliated Graphene as an Electrode of Supercapacitor Analysis of Li-Ion Battery Pack Performance Air Cooling Battery Compartment on a Swappable Battery of Electric Motorcycle 3D Printed Polymer Core and Carbon Fiber Skin Sandwich Composite: An Alternative Material and Process for Electric Vehicles Customization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1