Support for traceability management of software artefacts using Natural Language Processing

A. Arunthavanathan, S. Shanmugathasan, S. Ratnavel, V. Thiyagarajah, I. Perera, D. Meedeniya, D. Balasubramaniam
{"title":"Support for traceability management of software artefacts using Natural Language Processing","authors":"A. Arunthavanathan, S. Shanmugathasan, S. Ratnavel, V. Thiyagarajah, I. Perera, D. Meedeniya, D. Balasubramaniam","doi":"10.1109/MERCON.2016.7480109","DOIUrl":null,"url":null,"abstract":"One of the major problems in software development process is managing software artefacts. While software evolves, inconsistencies between the artefacts do evolve as well. To resolve the inconsistencies in change management, a tool named “Software Artefacts Traceability Analyzer (SAT-Analyzer)” was introduced as the previous work of this research. Changes in software artefacts in requirement specification, Unified Modelling Language (UML) diagrams and source codes can be tracked with the help of Natural Language Processing (NLP) by creating a structured format of those documents. Therefore, in this research we aim at adding an NLP support as an extension to SAT-Analyzer. Enhancing the traceability links created in the SAT-analyzer tool is another focus due to artefact inconsistencies. This paper includes the research methodology and relevant research carried out in applying NLP for improved traceability management. Tool evaluation with multiple scenarios resulted in average Precision 72.22%, Recall 88.89% and F1 measure of 78.89% suggesting high accuracy for the domain.","PeriodicalId":184790,"journal":{"name":"2016 Moratuwa Engineering Research Conference (MERCon)","volume":"41 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2016.7480109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

One of the major problems in software development process is managing software artefacts. While software evolves, inconsistencies between the artefacts do evolve as well. To resolve the inconsistencies in change management, a tool named “Software Artefacts Traceability Analyzer (SAT-Analyzer)” was introduced as the previous work of this research. Changes in software artefacts in requirement specification, Unified Modelling Language (UML) diagrams and source codes can be tracked with the help of Natural Language Processing (NLP) by creating a structured format of those documents. Therefore, in this research we aim at adding an NLP support as an extension to SAT-Analyzer. Enhancing the traceability links created in the SAT-analyzer tool is another focus due to artefact inconsistencies. This paper includes the research methodology and relevant research carried out in applying NLP for improved traceability management. Tool evaluation with multiple scenarios resulted in average Precision 72.22%, Recall 88.89% and F1 measure of 78.89% suggesting high accuracy for the domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自然语言处理支持软件工件的可追溯性管理
软件开发过程中的主要问题之一是软件工件的管理。在软件发展的同时,工件之间的不一致性也在发展。为了解决变更管理中的不一致性,作为本研究的前期工作,引入了一个名为“软件工件可追溯性分析器(SAT-Analyzer)”的工具。在自然语言处理(NLP)的帮助下,可以通过创建这些文档的结构化格式来跟踪需求规范、统一建模语言(UML)图和源代码中的软件工件的变化。因此,在本研究中,我们的目标是增加一个NLP支持作为SAT-Analyzer的扩展。由于工件不一致,增强在sat分析器工具中创建的可跟踪性链接是另一个重点。本文包括研究方法和应用NLP改进可追溯性管理的相关研究。多个场景下的工具评估结果显示,平均精密度为72.22%,召回率为88.89%,F1测量值为78.89%,表明该领域具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and construction of an automated test bench for MCB testing Stability analysis for a twin boom H- tail Medium Scale UAV through simulated dynamic model Command Governor Adaptive Control for Unmanned Underwater Vehicles with measurement noise and actuator dead-zone An automatic classifier for exam questions with WordNet and Cosine similarity Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1