Evaluation of NVIDIA Xavier NX Platform for Real-Time Image Processing for Fusion Diagnostics

B. Jabłoński, D. Makowski, P. Perek
{"title":"Evaluation of NVIDIA Xavier NX Platform for Real-Time Image Processing for Fusion Diagnostics","authors":"B. Jabłoński, D. Makowski, P. Perek","doi":"10.23919/MIXDES52406.2021.9497542","DOIUrl":null,"url":null,"abstract":"Real-time image processing is the core component of image plasma diagnostics. Efficient algorithms enable machine protection, contributing to future steady-state operation in nuclear fusion devices. The paper evaluates the applicability of the newest low-power NVIDIA Jetson Xavier NX platform for fusion diagnostics. This embedded NVIDIA Tegra System-on-a-Chip (SoC) integrates a Graphics Processing Unit (GPU) and Central Processing Unit (CPU) on a single chip. General-Purpose computing on Graphics Processing Units (GPGPU) provides high parallelism that is advantageous in image-based calculations. The hardware differences in comparison to the previous NVIDIA Jetson TX2 based on Pascal architecture, including innovations introduced in the Volta architecture for NVIDIA Tegra, are signified. The evaluation is performed on the Wendelstein 7-X (W7-X) stellarator experimental data. Implemented algorithms detect and analyse thermal events in real-time utilising the embedded GPU. Investigated thermal events are strike-lines, overload hotspots, reflections and surface layers. Their detection allows the automated real-time risk evaluation incorporated in the feedback plasma control and interlock systems in the W7-X. The speedup resulting from the upgrade to the Xavier NX platform is presented in the paper, along with techniques pertaining to key hardware differences and programming aspects specific to the NVIDIA Tegra facilitating real-time computing on the low-power embedded device.","PeriodicalId":375541,"journal":{"name":"2021 28th International Conference on Mixed Design of Integrated Circuits and System","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th International Conference on Mixed Design of Integrated Circuits and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES52406.2021.9497542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Real-time image processing is the core component of image plasma diagnostics. Efficient algorithms enable machine protection, contributing to future steady-state operation in nuclear fusion devices. The paper evaluates the applicability of the newest low-power NVIDIA Jetson Xavier NX platform for fusion diagnostics. This embedded NVIDIA Tegra System-on-a-Chip (SoC) integrates a Graphics Processing Unit (GPU) and Central Processing Unit (CPU) on a single chip. General-Purpose computing on Graphics Processing Units (GPGPU) provides high parallelism that is advantageous in image-based calculations. The hardware differences in comparison to the previous NVIDIA Jetson TX2 based on Pascal architecture, including innovations introduced in the Volta architecture for NVIDIA Tegra, are signified. The evaluation is performed on the Wendelstein 7-X (W7-X) stellarator experimental data. Implemented algorithms detect and analyse thermal events in real-time utilising the embedded GPU. Investigated thermal events are strike-lines, overload hotspots, reflections and surface layers. Their detection allows the automated real-time risk evaluation incorporated in the feedback plasma control and interlock systems in the W7-X. The speedup resulting from the upgrade to the Xavier NX platform is presented in the paper, along with techniques pertaining to key hardware differences and programming aspects specific to the NVIDIA Tegra facilitating real-time computing on the low-power embedded device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于融合诊断的实时图像处理NVIDIA Xavier NX平台的评估
实时图像处理是图像等离子体诊断的核心组成部分。有效的算法使机器保护,有助于未来核聚变装置的稳态运行。本文评估了最新的低功耗NVIDIA Jetson Xavier NX平台在融合诊断中的适用性。这款嵌入式NVIDIA Tegra片上系统(SoC)在单个芯片上集成了图形处理单元(GPU)和中央处理单元(CPU)。图形处理单元(GPGPU)上的通用计算提供高并行性,这在基于图像的计算中是有利的。与之前基于Pascal架构的NVIDIA Jetson TX2相比,硬件上的差异,包括在NVIDIA Tegra的Volta架构中引入的创新,都是显而易见的。对Wendelstein 7-X (W7-X)仿星器实验数据进行了评价。实现算法检测和分析热事件实时利用嵌入式GPU。研究的热事件包括走向线、过载热点、反射和表层。它们的检测允许将自动实时风险评估纳入W7-X的反馈等离子体控制和联锁系统中。本文介绍了升级到Xavier NX平台所带来的加速,以及与NVIDIA Tegra相关的关键硬件差异和编程方面的技术,这些技术有助于在低功耗嵌入式设备上进行实时计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Coprocessor for Integer Multiple Precision Arithmetic on Zynq Ultrascale+ MPSoC A Simple Method for Analysis of Operation of JLFET THz Radiation Sensors New Monolithic Multi-terminal Si-chips Integrating a Power Converter Phase-leg for Specific Applications Low-noise Amplifier for Photomultiplier Tube Detectors for Plasma Diagnostics Section 6: Embedded Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1