TFD thresholding in estimating the number of EEG components and the dominant if using the short-term rényi entropy

J. Lerga, N. Saulig, Rebeka Lerga, Ivan Štajduhar
{"title":"TFD thresholding in estimating the number of EEG components and the dominant if using the short-term rényi entropy","authors":"J. Lerga, N. Saulig, Rebeka Lerga, Ivan Štajduhar","doi":"10.1109/ISPA.2017.8073573","DOIUrl":null,"url":null,"abstract":"Time-frequency (TF) based EEG signal analysis using the local or short-term Rényi entropy often requires low-energy cross-terms and noise suppression prior to the estimation of the local number of components and the dominant component instantaneous frequency (IF). This can be easily accomplished by thresholding in the TF domain with the preset TF threshold value, often chosen empirically. The paper investigates the sensitivity of the method based on the local Rényi entropy to the chosen threshold value. The study was performed on real-life left and right hand movements EEG signals. As shown in the paper, the number of the EEG components extracted using the short-term Rényi entropy is highly sensitive to the chosen TF threshold value, unlike the dominant IF which was shown to be highly robust to TF thresholding. Hence, characterization of the EEG signals using the short-term Rényi entropy should include both detecting the number of EEG components and the dominant component IF estimation.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Time-frequency (TF) based EEG signal analysis using the local or short-term Rényi entropy often requires low-energy cross-terms and noise suppression prior to the estimation of the local number of components and the dominant component instantaneous frequency (IF). This can be easily accomplished by thresholding in the TF domain with the preset TF threshold value, often chosen empirically. The paper investigates the sensitivity of the method based on the local Rényi entropy to the chosen threshold value. The study was performed on real-life left and right hand movements EEG signals. As shown in the paper, the number of the EEG components extracted using the short-term Rényi entropy is highly sensitive to the chosen TF threshold value, unlike the dominant IF which was shown to be highly robust to TF thresholding. Hence, characterization of the EEG signals using the short-term Rényi entropy should include both detecting the number of EEG components and the dominant component IF estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TFD阈值法在估计脑电信号分量的数量和优势,如果使用短期rsamnyi熵
基于时频(TF)的脑电信号分析通常需要低能量交叉项和噪声抑制,然后才能估计局部分量数和主导分量瞬时频率(IF)。这可以很容易地通过在TF域中使用预设的TF阈值(通常是经验选择的)进行阈值处理来实现。研究了基于局部rsamnyi熵的方法对所选阈值的敏感性。这项研究是对现实生活中的左手和右手运动的脑电图信号进行的。如本文所示,使用短期rsamnyi熵提取的EEG分量的数量对所选择的TF阈值高度敏感,而不像主导IF对TF阈值具有高度鲁棒性。因此,利用短期r尼熵对脑电信号进行表征,既要检测脑电信号分量的数量,又要估计主分量的中频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time chest compression rate detection from smartphone video Image registration with subpixel accuracy of DCT-sign phase correlation with real subpixel shifted images Choosing an accurate number of mel frequency cepstral coefficients for audio classification purpose Blind determination of quality of JPEG compressed images Differentiating ureter and arteries in the pelvic via endoscope using deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1