Ayoub Zumeit, A. Dahiya, Adamos Christou, R. Dahiya
{"title":"High performance n-and p-channel flexible transistors using roll printed silicon nanoribbons","authors":"Ayoub Zumeit, A. Dahiya, Adamos Christou, R. Dahiya","doi":"10.1109/fleps53764.2022.9781569","DOIUrl":null,"url":null,"abstract":"Uniform and large-area printing of high mobility nano/microscale structures can enable high-performance flexible electronics, which is much needed in numerous electronic and optoelectronic applications. In this work, we report an optimized direct roll transfer printing method to integrate arrays of high mobility silicon nanoribbon (Si NRs) in a single step on a variety of flexible substrates including polyimide, polyethylene terephthalate, and metal foils, etc. Compared to conventional transfer printing, the developed method does not require the use of elastomeric transfer stamp. In consequence, significant improvements are accomplished in terms of accuracy of printed structures (~100nm) and excellent transfer yield (~95%) over printed area of ~2 cm2. Such features are essential to achieve uniform device-to-device performance characteristics over large areas. Further, the dependency study of the applied force on transfer yield is performed. The efficacy of the developed roll-based transfer printing process is demonstrated by realizing both n-and p-channel silicon NRs based high performance flexible field-effect transistors (Si NR-FETs). The present work opens new avenues for printed high performance integrated circuits.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Uniform and large-area printing of high mobility nano/microscale structures can enable high-performance flexible electronics, which is much needed in numerous electronic and optoelectronic applications. In this work, we report an optimized direct roll transfer printing method to integrate arrays of high mobility silicon nanoribbon (Si NRs) in a single step on a variety of flexible substrates including polyimide, polyethylene terephthalate, and metal foils, etc. Compared to conventional transfer printing, the developed method does not require the use of elastomeric transfer stamp. In consequence, significant improvements are accomplished in terms of accuracy of printed structures (~100nm) and excellent transfer yield (~95%) over printed area of ~2 cm2. Such features are essential to achieve uniform device-to-device performance characteristics over large areas. Further, the dependency study of the applied force on transfer yield is performed. The efficacy of the developed roll-based transfer printing process is demonstrated by realizing both n-and p-channel silicon NRs based high performance flexible field-effect transistors (Si NR-FETs). The present work opens new avenues for printed high performance integrated circuits.