Design methodologies for 3D mixed signal integrated circuits: A practical 12-bit SAR ADC design case

Wulong Liu, Guoqing Chen, Xuefeng Han, Yu Wang, Yuan Xie, Huazhong Yang
{"title":"Design methodologies for 3D mixed signal integrated circuits: A practical 12-bit SAR ADC design case","authors":"Wulong Liu, Guoqing Chen, Xuefeng Han, Yu Wang, Yuan Xie, Huazhong Yang","doi":"10.1145/2593069.2593122","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) integration technology has been proposed as a promising technology to provide small footprint, reduced wire-length, and the capability of heterogeneous integration. In particular, 3D IC is a good candidate to address the design issues in conventional analog/digital mixed-signal IC designs. In this work, we focus on modeling and analyzing the impacts of through silicon vias (TSVs) on mixed-signal ICs. Based on the analysis, a set of design methodologies for 3D mixed-signal ICs are proposed. The design methodologies are verified with a case study, in which a 12-bit successive approximation register analog-to-digital converter (SAR ADC) is re-designed by partitioning it into three stacked layers for 3D integration. The experimental results show that, compared to the traditional 2D counterpart, our 3D SAR ADC with optimized TSV placement can achieve significant area and power reduction, and performance improvement. Specifically, due to the isolation of substrate noise disturbance in our 3D design, the signal-to-noise-plus-distortion ratio (SNDR) is improved from 68.74 dB to 74.12 dB.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Three-dimensional (3D) integration technology has been proposed as a promising technology to provide small footprint, reduced wire-length, and the capability of heterogeneous integration. In particular, 3D IC is a good candidate to address the design issues in conventional analog/digital mixed-signal IC designs. In this work, we focus on modeling and analyzing the impacts of through silicon vias (TSVs) on mixed-signal ICs. Based on the analysis, a set of design methodologies for 3D mixed-signal ICs are proposed. The design methodologies are verified with a case study, in which a 12-bit successive approximation register analog-to-digital converter (SAR ADC) is re-designed by partitioning it into three stacked layers for 3D integration. The experimental results show that, compared to the traditional 2D counterpart, our 3D SAR ADC with optimized TSV placement can achieve significant area and power reduction, and performance improvement. Specifically, due to the isolation of substrate noise disturbance in our 3D design, the signal-to-noise-plus-distortion ratio (SNDR) is improved from 68.74 dB to 74.12 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维混合信号集成电路的设计方法:一个实用的12位SAR ADC设计案例
三维集成技术具有占地面积小、缩短线长和异构集成能力等优点,是一种很有前途的集成技术。特别是,3D集成电路是解决传统模拟/数字混合信号集成电路设计问题的一个很好的候选人。在这项工作中,我们专注于建模和分析透硅过孔(tsv)对混合信号集成电路的影响。在此基础上,提出了一套三维混合信号集成电路的设计方法。通过一个案例研究验证了设计方法,其中通过将12位连续逼近寄存器模数转换器(SAR ADC)划分为三个堆叠层进行3D集成,重新设计了该设计方法。实验结果表明,与传统的2D SAR ADC相比,优化了TSV布局的3D SAR ADC可以显著减少面积和功耗,并提高性能。具体来说,由于在我们的3D设计中隔离了衬底噪声干扰,信噪比(SNDR)从68.74 dB提高到74.12 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The EDA challenges in the dark silicon era CAP: Communication aware programming Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects State-restrict MLC STT-RAM designs for high-reliable high-performance memory system OD3P: On-Demand Page Paired PCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1