Proactive Robot Assistance via Spatio-Temporal Object Modeling

Maithili Patel, S. Chernova
{"title":"Proactive Robot Assistance via Spatio-Temporal Object Modeling","authors":"Maithili Patel, S. Chernova","doi":"10.48550/arXiv.2211.15501","DOIUrl":null,"url":null,"abstract":"Proactive robot assistance enables a robot to anticipate and provide for a user's needs without being explicitly asked. We formulate proactive assistance as the problem of the robot anticipating temporal patterns of object movements associated with everyday user routines, and proactively assisting the user by placing objects to adapt the environment to their needs. We introduce a generative graph neural network to learn a unified spatio-temporal predictive model of object dynamics from temporal sequences of object arrangements. We additionally contribute the Household Object Movements from Everyday Routines (HOMER) dataset, which tracks household objects associated with human activities of daily living across 50+ days for five simulated households. Our model outperforms the leading baseline in predicting object movement, correctly predicting locations for 11.1% more objects and wrongly predicting locations for 11.5% fewer objects used by the human user.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.15501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Proactive robot assistance enables a robot to anticipate and provide for a user's needs without being explicitly asked. We formulate proactive assistance as the problem of the robot anticipating temporal patterns of object movements associated with everyday user routines, and proactively assisting the user by placing objects to adapt the environment to their needs. We introduce a generative graph neural network to learn a unified spatio-temporal predictive model of object dynamics from temporal sequences of object arrangements. We additionally contribute the Household Object Movements from Everyday Routines (HOMER) dataset, which tracks household objects associated with human activities of daily living across 50+ days for five simulated households. Our model outperforms the leading baseline in predicting object movement, correctly predicting locations for 11.1% more objects and wrongly predicting locations for 11.5% fewer objects used by the human user.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空对象建模的主动机器人辅助
主动机器人辅助使机器人能够在没有明确要求的情况下预测并提供用户的需求。我们将主动协助定义为机器人预测与日常用户程序相关的物体运动的时间模式的问题,并通过放置物体以适应用户的需求来主动协助用户。引入生成图神经网络,从对象排列的时间序列中学习统一的对象动态时空预测模型。我们还提供了来自日常生活(HOMER)数据集的家庭物体运动,该数据集跟踪了五个模拟家庭50多天内与人类日常生活活动相关的家庭物体。我们的模型在预测物体运动方面优于领先的基线,正确预测11.1%的物体的位置,错误预测11.5%的人类用户使用的物体的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion Safe Robot Learning in Assistive Devices through Neural Network Repair COACH: Cooperative Robot Teaching Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1