A ranking algorithm based on contents and non-key attributes for object-level keyword search over relational databases

Jianmin Bao, Huan Wang, Xuan Shen, Gang Cui
{"title":"A ranking algorithm based on contents and non-key attributes for object-level keyword search over relational databases","authors":"Jianmin Bao, Huan Wang, Xuan Shen, Gang Cui","doi":"10.1109/ICIST.2014.6920333","DOIUrl":null,"url":null,"abstract":"Keyword search technique over relational databases is a research hot-spot in database field. At present, there have been many ranking correlation algorithms for object-level keyword search over relational databases. Object-level keyword search can better integrate information scattered in various tuples. OCS(Object-level Correction Sort) algorithm cannot rank results in keyword search accurately as was expected. This paper foucuses on the problems of ranking results in keyword search system for object-level over relational databases and proposes a new ranking algorithm SOCA(Sort of Correction Algorithm) which takes into consideration the content information of key attributes, and the correlation of non-key attributes. We use Weight to evaluate the content information of key attributes, and Correlation to assess the correlation of non-key attributes Finally, we give a score function about contents Correlation and Weight. Experiments demonstrate that this algorithm can effectively rank results and verify its reasonableness and effectiveness.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Keyword search technique over relational databases is a research hot-spot in database field. At present, there have been many ranking correlation algorithms for object-level keyword search over relational databases. Object-level keyword search can better integrate information scattered in various tuples. OCS(Object-level Correction Sort) algorithm cannot rank results in keyword search accurately as was expected. This paper foucuses on the problems of ranking results in keyword search system for object-level over relational databases and proposes a new ranking algorithm SOCA(Sort of Correction Algorithm) which takes into consideration the content information of key attributes, and the correlation of non-key attributes. We use Weight to evaluate the content information of key attributes, and Correlation to assess the correlation of non-key attributes Finally, we give a score function about contents Correlation and Weight. Experiments demonstrate that this algorithm can effectively rank results and verify its reasonableness and effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于内容和非键属性的排序算法,用于关系型数据库的对象级关键字搜索
关系型数据库关键字搜索技术是数据库领域的研究热点。目前,针对关系数据库中对象级关键字搜索,已经出现了许多排序关联算法。对象级关键字搜索可以更好地整合分散在各种元组中的信息。OCS(Object-level Correction Sort,对象级校正排序)算法在关键字搜索中不能按预期对结果进行准确排序。针对对象级关系型数据库关键字搜索系统中的排序问题,提出了一种考虑关键属性内容信息和非关键属性相关性的排序算法SOCA(Sort of Correction algorithm)。我们用权重来评价关键属性的内容信息,用相关性来评价非关键属性的相关性,最后给出了内容相关性和权重的评分函数。实验表明,该算法能有效地对结果进行排序,验证了算法的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined selective mapping and extended hamming codes for PAPR reduction in OFDM systems Outage analysis of two-way AF relaying systems with imperfect CSI and multiple interferers over Nakagami-m fading channels An empirical study of filter-based feature selection algorithms using noisy training data Using DTW to measure trajectory distance in grid space Parameter optimization for hyperspectral image compression algorithm of maximum error controllable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1